系列简介:这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限这类高等数学课程不要求掌握的内容,我们不作过多介绍。本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。文章中的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当选取了一些考研数学试题。所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“高等数学入门”系列文章,欢迎关注数学若只如初见!
多项式方程虽然不是高等数学课程的研究内容,但在导数应用的相关题目中经常涉及,本节我们来补充介绍一些关于多项式方程的内容,例如著名的代数基本定理,并利用高阶导数给出判断多项式方程是否有重根的方法。(由于公式较多,故正文采用图片形式给出。)
一、概述。二、代数基本定理简介(读者了解即可)。
三、多项式方程k重根的概念,以及在已知方程根的情形下,如何利用高阶导数判断根的重数。
四、多项式方程的一个典型例子。(请读者仔细分析这个例子,在学习中值定理和导数应用的知识后,我们会介绍一个类似的考研题。)
五、方程的根未知时,如何判断方程有没有重根?(精确求解一般的高次方程通常是不可能的,见本文末的选读。)
六、利用命题2推导一元二次方程有重根的条件(注意此推导中并未用到一元二次方程的求根公式)。
选读:任何代数方程都有求根公式吗?(根据代数基本定理,任何高次代数方程在复数域内均有解,但伽罗瓦的证明表明,这些解通常都无法用根式的形式精确求出!)
上一篇:高等数学入门——计算高阶导数的常用方法和典型例题