一元三次方程重根判别式_一元三次方程的求根公式

本文详细介绍了如何解决一元三次方程,包括卡尔达诺方法、韦达替换和拉格朗日方法。通过这些方法,可以得到一元三次方程的根,并探讨了判别式在判断重根方面的重要性。此外,还讨论了一元三次方程的几何意义和图像特征。
摘要由CSDN通过智能技术生成

一元二次方程的回顾和启示

学过初中数学都知道对于任何一个实系数一元二次方程

equation?tex=ax%5E2%2Bbx%2Bc%3D0%2C~a+%5Cneq+0 ,通过配方可以得到

equation?tex=%5Cleft%28x%2B%5Cfrac%7Bb%7D%7B2a%7D%5Cright%29%5E2%3D%5Cfrac%7Bb%5E2-4ac%7D%7B4a%5E2%7D ,根据判别式

equation?tex=%5CDelta%3Db%5E2-4ac 的符号,可以判断方程实根的个数,并且可以得到求根公式

equation?tex=+x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%3D-%5Cfrac%7Bb%7D%7B2a%7D%5Cpm%5Cfrac%7B%5Csqrt%7B%5CDelta%7D%7D%7B2a%7D%5C%5C

要么是

equation?tex=2 个不同的实根

equation?tex=%5CDelta%3E0 ,要么是

equation?tex=1 个二重实根

equation?tex=%5CDelta%3D0 ,要么是

equation?tex=1 对共轭虚根

equation?tex=%5CDelta%3C0 ;计算重数的情况下都是

equation?tex=2 个根。

记两根为

equation?tex=+x_1%3D%5Cfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D+%2C~+x_2%3D%5Cfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D+%5C%5C

可以直接验证韦达定理:

两根之和

equation?tex=x_1%2Bx_2%3D-%5Cfrac%7Bb%7D%7Ba%7D+ 以及两根之积

equation?tex=x_1x_2%3D%5Cfrac%7Bc%7D%7Ba%7D,判别式

equation?tex=+%5CDelta%3Da%5E2%28x_1-x_2%29%5E2 .

求根公式看上去复杂,但如果把上述两式代入求根公式

equation?tex=x%3D-%5Cfrac%7Bb%7D%7B2a%7D%5Cpm%5Csqrt%7B%5Cleft%28-%5Cfrac%7Bb%7D%7B2a%7D%5Cright%29%5E2-%5Cfrac%7Bc%7D%7Ba%7D%7D%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%5Cpm%5Csqrt%7B%5Cleft%28%5Cfrac%7Bx_1-x_2%7D%7B2%7D%5Cright%29%5E2%7D%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%5Cpm%5Cfrac%7Bx_1-x_2%7D%7B2%7D%5C%5C .

注:如果

equation?tex=x_1%2C~x_2 是共轭虚根,

equation?tex=x_1-x_2 就是纯虚数,对负数

equation?tex=%5Cleft%28%5Cfrac%7Bx_1-x_2%7D%7B2%7D%5Cright%29%5E2 开方不能得到

equation?tex=%5Cfrac%7B%7Cx_1-x_2%7C%7D%7B2%7D .

几何意义:记

equation?tex=s%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%3D-%5Cfrac%7Bb%7D%7B2a%7D 是两根的平均值,乘积为

equation?tex=p%3Dx_1x_2%3D%5Cfrac%7Bc%7D%7Ba%7D . 如果

equation?tex=x_1%2C~x_2 都是实根,则

equation?tex=d%3D%5Cfrac%7B%7Cx_1-x_2%7C%7D%7B2%7D%3D%5Csqrt%7Bs%5E2-p%7D 是根到平均值的距离。

求根公式就可以改写成

equation?tex=x%3D-%5Cfrac%7Bb%7D%7B2a%7D%5Cpm%5Csqrt%7B%5Cleft%28-%5Cfrac%7Bb%7D%7B2a%7D%5Cright%29%5E2-%5Cfrac%7Bc%7D%7Ba%7D%7D%3Ds%5Cpm%5Csqrt%7Bs%5E2-p%7D%3Ds%5Cpm+d%5C%5C

两根到平均值

equation?tex=s 的距离

equation?tex=d%3D%5Cfrac%7B%7Cx_1-x_2%7C%7D%7B2%7D 还可以通过下列方式得到:

不妨设

equation?tex=x_1%3Ds%2Bd%2C~+x_2%3Ds-d ,用平方差公式得到

equation?tex=%28s%2Bd%29%28s-d%29%3Ds%5E2-d%5E2%3Dp ,立即可以算出

equation?tex=d%3D%5Csqrt%7Bs%5E2-p%7D .

可以看到在实根的情况下

equation?tex=s%3D%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D 是实数轴上两根的中点,而

equation?tex=d%3D%5Cfrac%7B%7Cx_2-x_1%7C%7D%7B2%7D 是两根到中点的距离。

如果

equation?tex=%5CDelta%3C0

equation?tex=z_1%3D-%5Cfrac%7Bb%7D%7B2a%7D%2B%5Cfrac%7B%5Csqrt%7B-%5CDelta%7D%7D%7B2a%7Di

equation?tex=z_2%3D-%5Cfrac%7Bb%7D%7B2a%7D-%5Cfrac%7B%5Csqrt%7B-%5CDelta%7D%7D%7B2a%7Di 是共轭虚根,绝对值(长度)相等

equation?tex=s%3D%5Cfrac%7Bz_1%2Bz_2%7D%7B2%7D%3D-%5Cfrac%7Bb%7D%7B2a%7D 在复平面上是

equation?tex=z_1

equation?tex=z_2 连线的中点(在实轴上),刚好对应由

equation?tex=z_1

equation?tex=z_2 作为两邻边的菱形对角线的交点,是菱形水平方向对角线的一半,而

equation?tex=d%3D%5Cpm%5Cfrac%7Bz_1-z_2%7D%7B2%7D%3D%5Cfrac%7B%5Csqrt%7B-%5CDelta%7D%7D%7B2a%7Di 是中点到两根的有向距离,是菱形竖直方向对角线的一半。

如果考虑一般的复系数一元二次方程呢?任何两个复数

equation?tex=z_1

equation?tex=z_2 都可能是方程的两根,因为由韦达定理可以构造出

equation?tex=z%5E2-%28z_1%2Bz_2%29z%2Bz_1z_2%3D0%5C%5C

所以

equation?tex=s%3D%5Cfrac%7Bz_1%2Bz_2%7D%7B2%7D 就是两根连线的中点,但不一定在实轴上,以

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值