三个点在同一个半圆的概率_圆中四鸭属于一个半圆的概率

本文探讨了一道初中数学问题,即四只鸭子在圆中位于同一半圆的概率。通过分析鸭子位置与弧度的关系,提出两种编程解决方案,得出概率为0.5。此外,文章还提供了手动计算的方法,涉及概率论和独立事件的组合,适合家长和孩子一起学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天有人发了一道初中数学题:

35d930e491ed39190c262e10103d44c1.png

就是4只鸭子在一个圆,求他们在一个半圆的概率。

其实如果用半径和弧度来表示鸭子的位置,可以避开平面坐标二次项的麻烦。

而且显然鸭子是否属于一个半圆只与它们的弧度有关,与它们距离圆心的距离无关。

4只鸭子属于一个半圆的充要条件:其中一只鸭子顺时针转180度,或逆时针转180度,可以扫遍其它的鸭子。

按照这个思路不难写出程序:

set.seed(100)
n <- 1000000
angle <- matrix(runif(n*4, 0, 360), nrow=4)
max.angle <- apply(angle, 2, max)
min.angle <- apply(angle, 2, min)
reverse.angle <- ifelse(angle>180, angle-360, angle)
max.reverse <- apply(reverse.angle,2,max)
min.reverse <- apply(reverse.angle,2,min)
sum(max.angle-min.angle<180 | max.reverse-min.reverse<180)/n

结果就是0.5.

如果用python是这样:

import numpy as np
def duck_guess():
    s = e = 1000000
    r = 0
    while(e > 0):
        e = e - 1
        d = np.random.uniform(0,360,(1,4))[0]
        d = np.sort(d)
        angle = -1
        delta = 0
        for x in range(d.size):
            if(angle >0 and delta < d[x] - angle):
                delta =  d[x] - angle
            angle = d[x]
        if(delta >= 180):
            r = r + 1
        elif(d[0]+ 360 - d[-1:] >= 180):
            r = r +1
    print(r*1.0/s)

duck_guess()

答案也是0.5,但python代码长很多,运行时间慢很多。如果想学习编程的家长和小朋友,注意了。

当然,还有更简单一些的方法。前面4只鸭子都是随机的,因此会有顺时针和逆时针两种可能;但如果固定了其中第一只鸭子,那么四只鸭子练成半圆就只有一种可能了,就是穿过第一只鸭子那种方案。于是可以写成第二个程序。

angle <- rbind(matrix(runif(n*3, 0, 360), nrow=3), rep(180,n))
max.angle <- apply(angle, 2, max)
min.angle <- apply(angle, 2, min)
sum(max.angle-min.angle<180)/n

结果自然也是0.5的。

有人说初中生不懂编程怎么办?其实也可以手算。

比如先固定一只鸭子,连圆心作一条直径,那么其它3只鸭子都在它左边,或者都在它右边的概率都是0.5^3=0.125,因为3只鸭子的位置是独立的,因此,加起来是0.25;

最后一种情况是左边和右边分别有1只或2只,但不相等,恰好在直径上的概率是0,可以忽略。

假设1只在左边,两只在右边,左边是a1,a1<0,右边是a2,a3>0,那么我们知道,如果a1固定了,则需要0<a2<a1+0.5,0<a3<a1+0.5,而由于a2、a3是独立的,因此

可以看出,这个概率是1/24,而这样的情况有多少种呢?

比如一个左边两个右边,就有3种情况,就是3只鸭子分别在左边;

还有就是两只鸭子在左边,一只鸭子在右边,也是3种情况,一共6种情况,总概率是6/24=0.25。

最后,加上之前三只鸭子在一边的情况,就是0.25+0.25=0.5,也得出了0.5。

不过,有人说这是初中题,初中生未必懂积分。当然,从答案反推道理也不难,这里就不推了。

感觉以后要辅导女儿搞奥数也不容易,但好歹可以省了不少培训班的钱。哎,可怜天下父母心。

根据网友回答总结了通项公式,四大不用这么复杂:

假设n只鸭子,其中一个角度是零,则有;

1.其余都大于0的概率;(1/2)^(n-1);

2.至少一个小于零,假设a1最小,那么它的范围是(-0.5,0),其余的范围只能是(a1,a1+0.5),都是0.5的区间,一共(1/2)^(n-2),再乘以a1的0.5,变成(1/2)^(n-1),一共n-1个这样的(有一个是0),因此是(n-1)(1/2)^(n-1)(

3.综合1,2,一共是n(1/2)^(n-1);

如果n=4,4*0.125=0.5,没错。

或者更容易理解的方式:假设一号鸭子最左,那么其余鸭子离他0.5的概率论是0.5^(n-1);由于每只鸭子最左的概率论是一样的,所以加起来就是n(1/2)^(n-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值