给定一个n*n*n的立方体(中心点为原点O),选择尽量多的点,使得对于任意两点A,B,B不在线段OA上。
可以发现,原问题可转化为三维坐标下的点(x,y,z)中有多少个点的gcd(x,y,z)=1。
这道题我一开始想用欧拉函数做,但我发现需要求出1-n中与每个整数x互质的数的个数,于是试图修改一下欧拉函数的公式,结果发现计算出来的结果存在微小的偏差,原因是n不一定能被x的所有因子整除,使得(n/p)*(n/q)≠n/pq。被逼无奈,于是学了莫比乌斯反演。
莫比乌斯反演的做法是:令$n=n/2$,在$1leqslant x,y,zleqslant n$的限制条件下,设$f(X)$为$gcd(x,y,z)=X$的点的个数,$F(X)$为$gcd(x,y,z)=kX$的点的个数,则$F(X)=sumlimits_{X|d}f(d)$,根据莫比乌斯反演定理则有$f(X)=sum limits_{X|d}mu (frac{d}{X})F(d)$,$f(1)$即为$x,y,z$均大于0情况下的答案。由于又有$F(X)=left lfloor frac{n}{X} ight floor^3$,因此可以在$O(n)$的时间内算出$f(X)$。
然后用同样的方法可以算出$x,y,z$中有一个为0,另外两个大于0情况下的答案,将$F(X)$换为$left lfloor frac{n}{X} ight floor^2$即可。
一共有8个卦限,坐标平面上的12个象限,将结果乘一乘加一加,再加上在坐标轴上的6种情况,就得到答案了。
1 #include
2
3 using namespacestd;4 typedef long longll;5 const ll N=1e5+10;6 ll n,mu[N],d[N],c[N],ka;7 voidinit() {8 mu[1]=1;9 for(ll i=1; i
20 intmain() {21 init();22 while(scanf("%lld",&n)&&n) {23 n/=2;24 printf("Crystal %lld: %lld",++ka,f(1,F1)*8+f(1,F2)*12+6);25 }26 return 0;27 }
还可以进一步优化,利用整除分块的方法,将复杂度降到$O(sqrt n)$
1 #include
2
3 using namespacestd;4 typedef long longll;5 const ll N=1e5+10;6 ll n,mu[N],smu[N],ka,ans;7 voidinit() {8 mu[1]=1;9 for(ll i=1; i
14 intmain() {15 init();16 while(scanf("%lld",&n)&&n) {17 n/=2;18 ans=0;19 for(ll l=1,r; l<=n; l=r+1) {20 ll t=n/l;21 r=n/t;22 ans+=(t*t*t*8+t*t*12)*(smu[r]-smu[l-1]);23 }24 ans+=6;25 printf("Crystal %lld: %lld",++ka,ans);26 }27 return 0;28 }
以上筛莫比乌斯函数的方法复杂度是$O(nlogn)$的,也可以换成复杂度更低的$O(n)$的线性筛法,只是代码略长,不再赘述了。