【面试八股文】每日一题:redis的LRU了解过吗? 可否手写一个LRU算法?

本文介绍了LRU(LeastRecentlyUsed)缓存算法的设计思想,如何在O(1)时间内完成读写操作,并提供了两种实现方式:依赖JDK的LinkedHashMap和自定义双链表。作者通过示例展示了LRU在实际场景中的应用和操作过程。
摘要由CSDN通过智能技术生成

是什么

 LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的数据予以淘汰。

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

设计思想:

 1 所谓缓存,必须要有读+写两个操作,按照命中率的思路考虑,写操作+读操作时间复杂度都需要为O(1)

2 特性要求分析

2.1 必须有顺序之分,以区分最近使用的和很久没用到的数据排序。

2.2 写和读操作 一次搞定。

2.3 如果容量(坑位)满了要删除最不长用的数据,每次新访问还要把新的数据插入到队头(按照业务你自己设定左右那一边是队头)

 查找快,插入快,删除快,且还需要先后排序-------->什么样的数据结构满足这个问题?

你是否可以在O(1)时间复杂度内完成这两种操作?

果一次就可以找到,你觉得什么数据结构最合适??

手写LRU

依赖JDK

package com.hhf.study.lru;

import java.util.LinkedHashMap;
import java.util.Map;

public class LRUCacheDemo<K,V> extends LinkedHashMap<K, V> {

    private int capacity;//缓存坑位

    public LRUCacheDemo(int capacity) {
        super(capacity,0.75F,false);
        this.capacity = capacity;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
        return super.size() > capacity;
    }

    public static void main(String[] args) {
        LRUCacheDemo lruCacheDemo = new LRUCacheDemo(3);

        lruCacheDemo.put(1,"a");
        lruCacheDemo.put(2,"b");
        lruCacheDemo.put(3,"c");
        System.out.println(lruCacheDemo.keySet());

        lruCacheDemo.put(4,"d");
        System.out.println(lruCacheDemo.keySet());

        lruCacheDemo.put(3,"c");
        System.out.println(lruCacheDemo.keySet());
        lruCacheDemo.put(3,"c");
        System.out.println(lruCacheDemo.keySet());
        lruCacheDemo.put(3,"c");
        System.out.println(lruCacheDemo.keySet());
        lruCacheDemo.put(5,"x");
        System.out.println(lruCacheDemo.keySet());
    }
}

/**
 * true
 * [1, 2, 3]
 * [2, 3, 4]
 * [2, 4, 3]
 * [2, 4, 3]
 * [2, 4, 3]
 * [4, 3, 5]
 * */

/**
 [1, 2, 3]
 [2, 3, 4]
 [2, 3, 4]
 [2, 3, 4]
 [2, 3, 4]
 [3, 4, 5]
 */

不依赖JDK

package com.dc.hhf.study.lru;


import org.w3c.dom.Node;

import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;

public class LRUCacheDemo{


    //map负责查找,构建一个虚拟的双向链表,它里面安装的就是一个个Node节点,作为数据载体。

    //1.构造一个node节点作为数据载体
    class Node<K, V>
    {
        K key;
        V value;
        Node<K,V> prev;
        Node<K,V> next;

        public Node(){
            this.prev = this.next = null;
        }

        public Node(K key, V value)
        {
            this.key = key;
            this.value = value;
            this.prev = this.next = null;
        }

    }

    //2 构建一个虚拟的双向链表,,里面安放的就是我们的Node
    class DoubleLinkedList<K, V>
    {
        Node<K, V> head;
        Node<K, V> tail;

        public DoubleLinkedList(){
            head = new Node<>();
            tail = new Node<>();
            head.next = tail;
            tail.prev = head;
        }

        //3. 添加到头
        public void addHead(Node<K,V> node)
        {
            node.next = head.next;
            node.prev = head;
            head.next.prev = node;
            head.next = node;
        }

        //4.删除节点
        public void removeNode(Node<K, V> node) {
            node.next.prev = node.prev;
            node.prev.next = node.next;
            node.prev = null;
            node.next = null;
        }

        //5.获得最后一个节点
        public Node getLast() {
            return tail.prev;
        }
    }

    private int cacheSize;
    Map<Integer,Node<Integer,Integer>> map;
    DoubleLinkedList<Integer,Integer> doubleLinkedList;

    public LRUCacheDemo(int cacheSize)
    {
        this.cacheSize = cacheSize;//坑位
        map = new HashMap<>();//查找
        doubleLinkedList = new DoubleLinkedList<>();
    }

    public int get(int key){
        if (!map.containsKey(key)){
            return -1;
        }

        Node<Integer, Integer> node = map.get(key);
        doubleLinkedList.removeNode(node);
        doubleLinkedList.addHead(node);

        return node.value;
    }

    public void put(int key, int value)
    {
        if (map.containsKey(key)){  //update
            Node<Integer, Integer> node = map.get(key);
            node.value = value;
            map.put(key, node);

            doubleLinkedList.removeNode(node);
            doubleLinkedList.addHead(node);
        }else {
            if (map.size() == cacheSize)  //坑位满了
            {
                Node<Integer,Integer> lastNode = doubleLinkedList.getLast();
                map.remove(lastNode.key);
                doubleLinkedList.removeNode(lastNode);
            }

            //新增一个
            Node<Integer, Integer> newNode = new Node<>(key, value);
            map.put(key,newNode);
            doubleLinkedList.addHead(newNode);

        }
    }

    public static void main(String[] args) {

        LRUCacheDemo lruCacheDemo = new LRUCacheDemo(3);

        lruCacheDemo.put(1,1);
        lruCacheDemo.put(2,2);
        lruCacheDemo.put(3,3);
        System.out.println(lruCacheDemo.map.keySet());

        lruCacheDemo.put(4,1);
        System.out.println(lruCacheDemo.map.keySet());

        lruCacheDemo.put(3,1);
        System.out.println(lruCacheDemo.map.keySet());
        lruCacheDemo.put(3,1);
        System.out.println(lruCacheDemo.map.keySet());
        lruCacheDemo.put(3,1);
        System.out.println(lruCacheDemo.map.keySet());
        lruCacheDemo.put(5,1);
        System.out.println(lruCacheDemo.map.keySet());

    }
}

/**
 * true
 * [1, 2, 3]
 * [2, 3, 4]
 * [2, 4, 3]
 * [2, 4, 3]
 * [2, 4, 3]
 * [4, 3, 5]
 * */

/**
 [1, 2, 3]
 [2, 3, 4]
 [2, 3, 4]
 [2, 3, 4]
 [2, 3, 4]
 [3, 4, 5]
 */

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值