java求多项式回归_多项式回归(Polynomial Regression)(附代码)

如果一个方程,自变量的指数大于1,那么所有拟合这个方程的点就符合多项式回归。

0818b9ca8b590ca3270a3433284dd417.png

多项式回归有个很重要的因素就是指数(degree)。如果我们发现数据的分布大致是一条曲线,那么很可能符合多项式回归,但是我们不知道degree是多少。所以我们只能一个个去试,直到找到最拟合分布的degree。这个过程我们可以交给数据科学软件完成。需要注意的是,如果degree选择过大的话可能会导致函数过于拟合, 意味着对数据或者函数未来的发展很难预测,也许指向不同的方向。

这个回归的计算需要用到矩阵数据结构。有的编程语言可能需要导入外库。

0818b9ca8b590ca3270a3433284dd417.png

我们对所有拟合这个公式的点,用矩阵表示他们的关系

0818b9ca8b590ca3270a3433284dd417.png

如果用矩阵符号表示:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用多项式回归函数关系的代码: ```python import numpy as np import sklearn.pipeline as pl import sklearn.preprocessing as sp import sklearn.linear_model as lm from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt # 生成数据集 data = [] for i in range(100): x = np.random.uniform(-5., 15.) eps = np.random.normal(0., 0.1) y = -5.555 * x**3 + 2.333 * x**2 + 1.477 * x + 0.089 + eps data.append([x, y]) data = np.array(data) # 创建模型(管线) piple = pl.make_pipeline( sp.PolynomialFeatures(3), # 多项式特征扩展器,degree表示拟合的最高次数,这里是3次 lm.LinearRegression() # 线性回归器 ) model = piple.fit(data[:, 0].reshape(-1, 1), data[:, 1]) # 查看结果(评价指标) y_pred = model.predict(data[:, 0].reshape(-1, 1)) mse = mean_squared_error(y_pred, data[:, 1]) print('MSE:', mse) # 预测 x_new = np.arange(-25, 25).reshape(-1, 1) y_pred = model.predict(x_new) # 可视化结果 plt.scatter(data[:, 0], data[:, 1], c='g', label='scatter gram') plt.scatter(x_new, y_pred, c='red', label='predicted') plt.legend() plt.show() ``` 这段代码首先生成了一个包含100个样本点的数据集,每个样本点包括一个输入x和一个输出y。然后使用多项式回归创建了一个模型,并将数据集用于模型的训练。接着计算了预测结果与真实结果之间的均方误差(MSE)作为评价指标。最后,使用模型对新的输入进行预测,并将原始数据点和预测结果在散点图上进行可视化展示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值