三角形和矩形傅里叶变换_信号与系统:第三章傅立叶变换2.ppt

第三节 连续时间周期信号的频谱分析 一)周期矩形脉冲的频谱 三、 周期信号的有效频帶宽度(简称带宽) 四、 周期信号的功率谱 第四节、 连续时间非周期信号的频谱 一、 从傅立叶级数到傅里叶变换 三、一些典型信号的 频谱函数F(jw) (即傅里叶变换) (2)单边指数信号的傅里叶变换 * 一、 周期信号的频谱 描述An(或|Fn|)及相位jn随频率变化的一种谱线图 幅度谱:表示f (t)中各谐波的幅度(An或 |Fn|) 随频率ω(或f ) 变化的图。 相位谱:表示f (t)中各谐波的相位jn 随频率ω(或f )变化的图。 频谱图 (频谱特性曲线): 频谱图分为幅度谱和相位谱 5W w An 0 10W A1 A2 w 5W |Fn| 0 10W F1 F2 -10W -5W F- 2 F- 1 幅度谱:以频率ω (或f )为横坐标,以各谐波的振幅An 或|Fn| 为纵坐标的谱线图。 每条竖线代表该频率分量的幅度,称为谱线。 连接各谱线顶点的曲线,称为包络线,反映各分 量幅度随频率ω (或f )变化的情况。 幅度谱 -10W -5W 5W w 0 10W 5W w 0 10W 相位谱:以频率ω (或f )为横坐标,以各谐波的相位 为纵坐标。 1) 单边 频谱 信号分解为三角形级数时用单边频谱表示 2) 双边频谱 信号分解为指数形级数时用双边频谱表示 5W w An 0 10W A1 A2 w 5W |Fn| 0 10W F1 F2 -10W -5W F- 2 F- 1 5W w 0 10W -10W -5W 5W w 0 10W w An 0 6 2 10 4 8 w n 0 6 2 10 4 8 w Fn 0 6 2 10 4 8 -6 -10 -2 -4 w n 0 6 2 10 4 8 -6 -2 -10 -4 w An 0 3 5 7 9 w 0 Fn 3 5 7 - -3 -5 -7 t 0 T 1 -T 指数形式的傅立叶系数 二、 周期信号频谱的特点 离散性:谱线只出现在离散频率点上(离散谱) 谐波性:所含频率均为周期信号角频率W的整数倍 收敛性:谐波幅度随n的增大而减小,当 时An(或 Fn)=0 Fn 周期信号频谱的特点: w An 0 w 0 可见周期矩形脉冲频谱中零点频率由t决定 周期矩形脉冲的各谱线的幅度随nW按抽样函数包络线规律变化。 周期矩形脉冲的各次谐波分量的大小正比于脉宽τ、脉幅E、反比于周期T 当Fn为实数时可把| Fn |和jn画在一个图上 2p/ t W w Fn 0 3W 1/4 4p/ t -2p/ t -4p/ t t 0 T 1 -T 1)有效频帶宽度的定义 2p/ t w Fn 0 1/4 4p/ t -2p/ t B ( Bf ) 有效频帶宽度B =2 / t (rad/s) 2)频带宽度B与脉冲宽度t、信号周期T的关系 Bf =1 / t (Hz) 有效频带宽度Bω (或Bf)与周期T无关,只与脉冲持续时间(脉冲宽度)t成反比。 a)周期T相同、脉冲宽度t不同的矩形脉冲的频带(占空比= t / T) t 0 T 1 t 0 T 1 t 0 T 1 Fn Fn w 2p/ t 0 1/8 2p/ t 0 1/4 w 0 2p/ t w Fn 1/16 T相同,谱线间隔相同;t 越窄,频谱包络线第一个零点频率越高;信号的带宽Bω越宽。 Fn 0 1/8 w 2p/ t 0 2p/ t Fn 1/4 2p /t Fn 0 1/16 w b)脉冲宽度t相同, 周期T不相同的矩形脉冲的频带 t 0 T 1 t 0 T 1 t T 1 0 2T t 相同,频谱包络线第一个零点频率相同,信号的带宽Bω相同; T变大时W变小,谱线间隔变密。 w (周期信号为功率信号) 当f (t)为电压和电流时其归一化的平均功率可表示为 (360) 、(3 61)式称为帕斯瓦尔恒等式 周期信号的平均功率=直流功率+各次谐波平均功率之和 非周期信号的概念 2p /t Fn 0 w 1/16 t 0 T 1 t 0 T 1 Fn 若周期脉冲信号的T足够长,使得后一个脉冲到来之前,前一个脉冲的作用早已消失,这样的信号可作为非周期信号来处理. 当 W 0 此时周期信号的离散谱将变成连续谱,同时|Fn| 0,不过这些无穷小量之间仍保持一定的比例关系,为描述非周期信号的频谱特性,引入了频谱密度的概念 0 2p /t 1/4 w 1) 由傅里叶级数到傅里叶变换 简写为 F(jw)=F[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值