图像处理之频率域数学基础

我的小程序:

待办计划:卷起来吧,少年!
我们记账:年薪50w够花么?

 

复数

复数C的定义如下:

C = R+jI

其中R和I是实数,j是虚数,即j = \sqrt{-1}

C的共轭复数C*:

C^{*} = R-jI

极坐标下表示复数:

C = |C|(\cos\theta+j\sin\theta)

其中|C| = \sqrt{R^{2}+I^{2}}\theta是该向量和实轴(x轴)的夹角。

根据欧拉公式:

e^{j\theta} = \cos\theta+j\sin\theta

有:

C = |C|e^{j\theta}

另外,复函数F(u)可表述为:

F(u) = R(u)+jI(u)

其中,R(u)和I(u)分别表示实分量函数和虚分量函数。

一维

冲激

连续变量t的单位冲激表示为:

\delta (t) = \begin{cases} \infty ,& t=0 \\ 0 ,& t\neq 0 \end{cases}

并且满足如下等式:

\int_{-\infty }^{\infty}\delta (t)dt = 1

一个冲激具有如下的取样特性

\int_{-\infty }^{\infty}f(t)\delta (t)dt = f(0)

其中f(t)在t=0处是连续的。

在任意点t_{0}的冲激表示为\delta (t-t_{0}),它的取样特性为:

\int_{-\infty}^{\infty}f(t)\delta (t-t_{0})dt = f(t_{0})

对于离散变量x,单位离散冲激\delta (x)如下:

\delta (x) = \begin{cases} 1 ,& x= 0\\ 0, & x\neq0 \end{cases}

并满足:

\sum_{x=-\infty}^{\infty}\delta(x) = 1

类似的,有取样特性

\sum_{x=-\infty}^{\infty}f(x)\delta(x) = f(0)

或者:

\sum_{x=-\infty}^{\infty}f(x)\delta(x-x_{0}) = f(x_{0})

无限多个分离的周期冲激单元\Delta T之和是一个冲激串s_{\Delta T}(t)

s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty}\delta(t-n\Delta T)

下图是一个冲激串:

傅里叶变换

傅里叶变换是空间域到频率域的变换。

连续函数f(t)的傅里叶变换为:

F(\mu) = \mathfrak{F}\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{-j2\pi \mu t}dt

给定F(\mu)可通过傅里叶反变换得到f(t),即:

f(t) = \mathfrak{F}^{-1}\{F(\mu)\} = \int_{-\infty}^{\infty}F(\mu)e^{j2\pi\mu t}d\mu

上面两式称为傅里叶变换对

求上图“盒状”函数f(t)的傅里叶变换:

\begin{align*} F(\mu)&=\int_{-\infty}^{\infty}f(t)e^{-j2\pi \mu t}dt = \int_{-W/2}^{W/2}Ae^{-j2\pi \mu t}dt \\ &= \frac{-A}{j2\pi \mu }[e^{-j2\pi \mu t}]_{-W/2}^{W/2} = \frac{-A}{j2\pi \mu }[e^{-j\pi \mu W}-e^{j\pi \mu W}]\\ &= \frac{A}{j2\pi \mu }[e^{j\pi \mu W}-e^{-j\pi \mu W}] = AW\frac{\sin(\pi \mu W)}{\pi \mu W} \end{align*}

最后一步根据 \sin\theta = (e^{j\theta}-e^{-j\theta})/2j。另外最后一步是一个sinc函数:

sinc(m) = \frac{sin(\pi m)}{\pi m}

sinc(0) = 1,对于m的其他所有整数,sinc(m) = 0。

傅里叶谱频谱)为:

|F(\mu)| = AW\left | \frac{\sin(\pi \mu W)}{\pi \mu W} \right |

F(\mu)|F(\mu)|的曲线如下图:

从图中可以看出F(\mu)|F(\mu)|的零值位置与“盒状”函数f(t)的宽度W成反比。

前面提到的周期为\Delta T的冲激串

s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty}\delta(t-n\Delta T)

的傅里叶变换为:

S(\mu) = \mathfrak{F}\{s_{\Delta T}(t)\} = \frac{1}{\Delta T}\sum_{n = -\infty}^{\infty}\delta(\mu-\frac{n}{\Delta T})

它仍是一个冲激串,周期变为1/\Delta T。这种周期的反比关系与“盒状”函数及其变换之间的关系是类似的,这点很重要。

卷积

两个函数的卷积\bigstar表示(定义):

f(t)\bigstar h(t) = \int_{-\infty}^{\infty}f(\tau )h(t-\tau)d\tau

卷积定理(与傅里叶变换的关系):

f(t)\bigstar h(t) \Leftrightarrow H(\mu)F(\mu)

f(t)h(t)\Leftrightarrow H(\mu)\bigstar F(\mu)

其中,F(\mu),H(\mu)分别是f(t),h(t)的傅里叶变换,\Leftrightarrow表示左边的式子通过傅里叶变换得到右边的式子,右边的式子通过傅里叶反变换得到左边的式子。如:

\mathfrak{F}\{f(t)\bigstar h(t)\} = H(\mu)F(\mu)

\mathfrak{F}^{-1}\{H(\mu)F(\mu)\} = f(t)\bigstar h(t)

取样

取样的方法是用一个周期为\Delta T的冲激函串作为取样函数去乘f(t)得到\tilde{f}(t)

\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{n = -\infty}^{\infty}f(t)\delta(t-n\Delta T)

每个取样值可通过积分得到:

f_{k} = \int_{-\infty}^{\infty}f(t)\delta(t-k\Delta T)dt = f(k\Delta T)

取样的傅里叶变换

取样后的函数\tilde{f}(t)的傅里叶变换\tilde{F}(\mu)是:

\tilde{F}(\mu) = \mathfrak{F}\{\tilde{f}(t)\} = \mathfrak{F}\{f(t)s_{\Delta T}(t)\} = F(\mu)\bigstar S(\mu)

其中S(\mu)是冲激串s_{\Delta T}(t)的傅里叶变换,即:

S(\mu)= \frac{1}{\Delta T}\sum_{n = -\infty}^{\infty}\delta(\mu-\frac{n}{\Delta T})

由卷积的定义可继续得到:

\begin{align*} \tilde{F}(\mu) &= F(\mu)\bigstar S(\mu) = \int_{-\infty}^{\infty}F(\tau)S(\mu-\tau)d\tau\\ &= \frac{1}{\Delta T}\int_{-\infty}^{\infty}F(\tau)\sum_{n=-\infty}^{\infty}\delta(\mu-\tau-\frac{n}{\Delta T})d\tau\\ &= \frac{1}{\Delta T}\sum_{n=-\infty}^{\infty}\int_{-\infty}^{\infty}F(\tau)\delta(\mu-\tau-\frac{n}{\Delta T})d\tau\\ &= \frac{1}{\Delta T}\sum_{n=-\infty}^{\infty}F(\mu-\frac{n}{\Delta T}) \end{align*}

最后一步根据冲激取样特性。上式表明,取样后的函数\tilde{f}(t)的傅里叶变换\tilde{F}(\mu)F(\mu)的一个拷贝的无限、周期序列,拷贝间的间隔由1/\Delta T决定。

下图中,图a是函数f(t)的傅里叶变换F(\mu)的简图,图b~d是不同的1/\Delta T对应的\tilde{F}(\mu),分别是过取样临界取样欠取样

如果能从\tilde{F}(\mu)包含的拷贝的周期序列中分离出F(\mu)的一个拷贝,那么就可以从取样后的版本复原f(t)。上图中的欠取样情况图d,由于取样率1/\Delta T偏低,不能保持F(\mu)的完整性,就不能从中完全回复f(t)。我们考虑临界取样的情况图c,将其放大:

从图中可以看出,要保持F(\mu)的完整性,拷贝间的距离要足够,即要求1/2\Delta T>\mu_{max},或:

\frac{1}{\Delta T}>2\mu_{max}

这就是取样定理:如果以超过函数最高频率的两倍的取样率来获取样本,连续的带限函数可以完全从它的样本集恢复。

带限函数:以原点为中心的有限区间(宽带)[-\mu_{max},\mu_{max}]之外的频率值,其傅里叶变换为零的函数f(t)。如下图:

以下图过取样的情况为例,来看如何从\tilde{F}(\mu)复原f(t):

图b的函数由下式定义:

H(\mu)\begin{cases} \Delta T, & -\mu_{max}\leqslant \mu \leqslant\mu_{max}\\ 0, & other \end{cases}

根据:

\tilde{F}(\mu) = \frac{1}{\Delta T}\sum_{n=-\infty}^{\infty}F(\mu-\frac{n}{\Delta T})

可通过下式得到F(\mu)

F(\mu) = H(\mu)\tilde{F}(\mu)

再通过傅里叶反变换复原f(t):

f(t) = \int_{-\infty}^{\infty}F(\mu)e^{j2\pi \mu t}d\mu

称上面的函数H(\mu)低通滤波器,因为它通过频率范围低端的频率,消除所有较高的频率。

对于欠取样的情况,容易看出无法通过低通滤波器得到一个完整的F(\mu),而产生频率混淆

混淆总是存在,尽管原始函数可能是带限的,但在实践中,我们必须限制函数持续的时间,得到非带限函数。例如,想把带限函数f(t)限制在区间[0,T]内,可以让f(t)乘如下函数实现:

h(t) = \begin{cases} 1, & 0\leqslant t \leqslant T\\ 0, & other \end{cases}

得到的这个函数有如下的基本形状:

通过前面介绍,“盒状”函数的傅里叶变换具有无限扩展的频率分量,如下图:

可以看出,该函数不是带限函数。事实上,没有有限持续时间的函数是带限的。所以,在实践中,混淆是不可避免的,但可以通过平滑输入函数减少高频分量方法来降低混淆的影响,称为抗混淆

离散傅里叶变换(DFT)

为了得到离散傅里叶变换DFT),我们对取样后的函数\tilde{f}(t)进行傅里叶变换:

\begin{align*} \tilde{F}(\mu) &=\int_{-\infty}^{\infty}\tilde{f}(t)e^{-j2\pi \mu t}dt \\ &= \int_{-\infty}^{\infty}\sum_{n=-\infty}^{\infty}f(t)\delta(t-n\Delta T)e^{-j2\pi \mu t}dt\\ &= \sum_{n=-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)\delta(t-n\Delta T)e^{-j2\pi \mu t}dt\\ &= \sum_{n=-\infty}^{\infty}f_{n}e^{-j2\pi\mu n\Delta T} \end{align*}

\tilde{F}(\mu)是周期为1/\Delta T的无限周期连续函数,为了表征一个周期,我们要对它的一个周期取样。假设要在周期\mu=0到\mu=1/\Delta T之间得到\tilde{F}(\mu)的M个等间距样本,可以在如下频率处得到:

\mu = \frac{m}{M\Delta T},m = 0,1,2,...,M-1

\mu代入\tilde{F}(\mu),并把结果记为F_{m},则:

F_{m} = \sum_{n=0}^{M-1}f_{n}e^{-j2\pi mn/M},m=0,1,2,...,M-1

上式就是离散傅里叶变换,对应的离散傅里叶反变换为:

f_{n} = \frac{1}{M}\sum_{m=0}^{M-1}F_{m}e^{j2\pi mn/M},n = 0,1,2,...,M-1

在二维情况下,用x,y表示图像坐标变量和u,v表示频率变量更为直观,我们将上面的离散傅里叶变换对改写成如下形式:

F(u) = \sum_{x=0}^{M-1}f(x)e^{-j2\pi ux/M},u = 0,1,2,...,M-1

f(x) = \frac{1}{M}\sum_{u=0}^{M-1}F(u)e^{j2\pi ux/M},x = 0,1,2,...,M-1

上面的离散傅里叶正变换和反变换都是以M为周期的,即:

F(u) = F(u+kM)

f(x) = f(x+kM)

其中k是整数。

卷积的离散等价表示为:

f(x)\bigstar h(x) = \sum_{m=0}^{M-1}f(m)h(x-m)

其中,x=0,1,2,...,M-1。上式也是周期的,它给出了周期卷积的一个周期,通常称为循环卷积

二维

二维冲激及取样

两个连续变量t和z的冲激\delta(t,z)

\delta(t,z) = \begin{cases} \infty, & t=z=0 \\ 0, & other \end{cases}

并且:

\int_{-\infty}^{\infty}\int_{\infty}^{\infty}\delta(t,z)dtdz = 1

与一维情况类似,有如下取样特性

\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)\delta(t,z)dtdz = f(0,0)

\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)\delta(t-t_{0},z-z_{0})dtdz = f(t_{0},z_{0})

二维离散冲激

\delta(x,y) = \begin{cases} 1, & x=y=0 \\ 0, & other \end{cases}

取样特性

\sum_{x=-\infty}^{\infty}\sum_{y=-\infty}^{\infty}f(x,y)\delta(x,y) = f(0,0)

\sum_{x=-\infty}^{\infty}\sum_{y=-\infty}^{\infty}f(x,y)\delta(x-x_{0},y-y_{0}) = f(x_{0},y_{0})

二维冲激串

s_{\Delta T\Delta Z}(t,z) = \sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}\delta(t-m\Delta T,z-n\Delta Z)

其中,\Delta T\Delta Z是连续函数f(t,z)沿t轴和z轴的样本间的间隔,如下图:

和一维的情况类似,用s_{\Delta T\Delta Z}(t,z)乘f(t,z)可得到取样后的函数。

二维中的带限函数:由区间[-\mu_{max},\mu_{max}]和区间[-v_{max},v_{max}]建立的矩形之外的傅里叶变换为0的函数f(t,z)。

取样定理:如果满足

\frac{1}{\Delta T}>2\mu_{max},\frac{1}{\Delta Z}>2v_{max}

则连续函数f(t,z)可由一组样本无误的恢复。

过取样欠取样如下图所示:

二维傅里叶变换

f(t,z)是连续函数,其二维傅里叶变换对如下:

F(\mu,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)e^{-j2\pi(\mu t + vz)}dtdz

f(t,z) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(\mu,v)e^{j2\pi(\mu t + vz)}d\mu dv

求下图二维函数的傅里叶变换:

和前面讲到的一维“盒状”函数类似:

\begin{align*} F(\mu,v) &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)e^{-j2\pi (\mu t+vz)}dtdz\\ &= \int_{-T/2}^{T/2}\int_{-Z/2}^{Z/2}Ae^{-j2\pi (\mu t+vz)}dtdz\\ &= ATZ[\frac{sin(\pi \mu T)}{\pi \mu T}][\frac{sin(\pi vZ)}{\pi vZ}]\end{align*}

它的傅里叶谱为:

|F(\mu,v)|= ATZ\left | \frac{sin(\pi \mu T)}{\pi \mu T} \right | \left | \frac{sin(\pi vZ)}{\pi vZ} \right |

与一维情况类似,零的位置与T和Z的值成反比,如下图:

二维离散傅里叶变换

类似一维的推导,可以得到下面的二维离散傅里叶变换

F(u,v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(ux/M+vy/N)}

其中,f(x,y)是大小为M*N的图像。

对应的傅里叶反变换为:

f(x,y)= \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\pi(ux/M+vy/N)}

二维离散傅里叶变换性质

1、平移和旋转

f(x,y)e^{j2\pi(u_{0}x/M+v_{0}y/N)}\Leftrightarrow F(u-u_{0},v-v_{0})

f(x-x_{0},y-y_{0}) \Leftrightarrow F(u,v)e^{-j2\pi(x_{0}u/M+y_{0}v/N)}

上面的傅里叶变换对表明,用指数项乘以f(x,y)将使DFT的原点移到点(u_{0},v_{0});反之,用负指数乘以F(u,v)将使f(x,y)的原点移到点(x_{0},y_{0}).

使用极坐标:

x=r\cos\theta,y=r\sin\theta,u=w\cos\varphi ,v=w\sin\varphi

有下面的傅里叶变换对:

f(r,\theta+\theta_{0})\Leftrightarrow F(w,\varphi+\varphi_{0})

上式表明,若f(x,y)旋转\theta_{0}角度,则F(u,v)旋转相同的角度。反之,若F(u,v)旋转一个角度,f(x,y)也旋转相同角度。

2、周期性

二维傅里叶变换及其反变换在u方向和v方向是无限周期的,即:

F(u,v) = F(u+k_{1}M,v) = F(u,v+k_{2}N) = F(u+k_{1}M,v+k_{2}N)

f(x,y) = f(x+k_{1}M,y) = f(x,y+k_{2}N) = f(x+k_{1}M,y+k_{2}N)

其中,k_{1},k_{2}是整数。

平移和周期性应用的例子:

考虑下图的一维谱

在区间[0,M-1]中,变换数据由两个在点M/2处背靠背半个周期组成,为了在该区间中有一个变换的完整周期,可以通过平移得到:

f(x)e^{j2\pi (u_{0}x/M)}\Leftrightarrow F(u-u_{0})

将F(0)移到u_{0}位置。如果令u_{0} = M/2,则指数项变为e^{j\pi x},因为x是整数,故它等于(-1)^{x},则:

f(x)(-1)^{x} \Leftrightarrow F(u-M/2)

平移后如下图:

在二维情况下,原理是一样的,如下图所示:

把F(0,0)点移到(M/2,N/2)处,即令下式

f(x,y)e^{j2\pi(u_{0}x/M+v_{0}y/N)}\Leftrightarrow F(u-u_{0},v-v_{0})

中的(u_{0},v_{0}) = (M/2,N/2),得到:

f(x,y)(-1)^{x+y}\Leftrightarrow F(u-M/2,v-N/2)

3、对称性

任意实函数或虚函数w(x,y)都表示成一个奇数部分和一个偶数部分的和:

w(x,y) = w_{e}(x,y)+w_{o}(x,y)

其中,偶数部分和奇数部分定义如下:

w_{e}(x,y) = \frac{w(x,y)+w(-x,-y)}{2}

w_{o}(x,y) = \frac{w(x,y)-w(-x,-y)}{2}

这里,我们谈论对称(反对称)时,我们指的是关于序列中点的对称(反对称),即一维阵列中心点右侧为正,左侧为负(二维情况类似)。于是,奇和偶的定义变为:

w_{e}(x,y) = w_{e}(M-x,N-y)

w_{o}(x,y) = -w_{o}(M-x,N-y)

我们知道,两个偶函数或两个奇函数的积是偶函数,一个偶函数和一个奇函数的的积是奇函数,另外,离散函数是奇函数的唯一方法是其所有样本的和为0。于是,有如下结论:

\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}w_{e}(x,y)w_{o}(x,y) = 0

偶函数奇函数例子:

考虑一维序列

f = {f(0) f(1) f(2) f(3)} = {2 1 1 1}

其中M = 4,要检验偶性,需满足f(x) = f(4-x),即:

f(0) = f(4),f(1)=f(3),f(2)=f(2),f(3)=f(1)

这里f(4)在被考察范围之外,所以f(0)对于偶函数的测试没关系。

奇序列中,根据奇函数的定义,第一项w_{o}(0,0)永远是0。考虑一维序列

g = {g(0) g(1) g(2) g(3)} = {0 -1 0 1}

序列中各项满足g(x) = -g(4-x),所以是奇序列。

二维情况如下:

上图是一个奇序列。

实函数f(x,y)的傅里叶变换是共轭对称的,即:

F^{*}(u,v) = F(-u,-v)

证明如下:

\begin{align*} F^{*}(u,v) &=\left [\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(ux/M+vy/N)} \right ]^{*}\\ &= \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)^{*}e^{j2\pi(ux/M+vy/N)}\\ &= \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi((-u)x/M+(-v)y/N)}\\ &= F(-u,-v) \end{align*}
第三步是因为f(x,y)是实函数。同理可以证明虚函数f(x,y)的傅里叶变换是共轭反对称的:

F^{*}(-u,-v) = -F(u,v)

下表列出离散傅里叶变换(DFT)的相关性质

其中,R(u,v),I(u,v)分别代表F(u,v)的实部与虚部。一个复函数是偶函数意味着其实部和虚部都是偶函数,同样,一个复函数是奇函数意味着其实部和虚部都是奇函数。

二维傅里叶谱和相角

二维DFT的极坐标形式:

F(u,v) = |F(u,v)|e^{j\phi (u,v)}

其中,|F(u,v)|称为傅里叶谱(或频谱):

|F(u,v)| = [R^{2}(u,v)+I^{2}(u,v)]^{1/2}

\phi(u,v)称为相角

\phi(u,v) = \arctan \left [ \frac{I(u,v)}{R(u,v)} \right ]

功率谱为:

P(u,v) = |F(u,v)|^{2} = R^{2}(u,v)+I^{2}(u,v)

|F(u,v)|,\phi(u,v),P(u,v)都是大小为M*N的阵列

根据前面提到的,实函数的傅里叶变化是共轭对称的,可以得到

谱是关于原点偶对称的:

|F(u,v)| = |F(-u,-v)|

相角关于原点奇对称:

\phi(u,v) = -\phi(-u,-v)

另外,容易得到如下结论:

F(0,0) = MN\frac{1}{MN}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y) = MN\bar{f}(x,y)

其中,\bar{f}(x,y)表示f的平均。上式表明零频率项与f(x,y)的平均值成正比。从而有:

|F(0,0)| = MN|\bar{f}(x,y)|

比例常数MN通常很大,|F(0,0)|通常是谱的最大分量,有时称为变换的直流分量。

二维卷积定理

二维循环卷积

f(x,y)\bigstar h(x,y) = \sum_{m=0}^{M-1}\sum_{n=0}^{N-1}f(m,n)h(x-m,y-n)

上式给出了一个二维周期序列的一个周期。

二维卷积定理

f(x,y)\bigstar h(x,y) \Leftrightarrow F(u,v)H(u,v)

f(x,y)h(x,y) \Leftrightarrow F(u,v)\bigstar H(u,v)

左右两边构成傅里叶变换对。

前面说过,离散傅里叶变换的表达式是有周期的。现在假如我们要求F(u,v)\bigstar H(u,v),即是求两个周期函数的卷积,必须考虑他们的周期性。

两个函数的卷积,可以看成是一个函数关于原点翻转并完全滑过零一个函数,在滑动过程中的每一个位移处我么执行计算。如下图所示的f和w进行卷积:

假如我们要对各有400个点的函数f和h进行卷积,可以写成:

f(x)\bigstar h(x) = \sum_{m=0}^{399}f(m)h(x-m)

包含以下过程:

  1. 关于原点求h的镜像(即使h旋转180°);
  2. 以数量x平移h函数;
  3. 对每个平移的x值,计算上式右边全部乘积之和。

注:位移x的范围要求h完全滑过f 所有值,这里x的范围是0到799。

上述过程可有下图左边的一列表示:

当f和h是周期函数时,他们的卷积过程就变成了上图中右边列的形式。可以看出,由于周期的存在,使他们互相干扰而导致所谓 缠绕错误,即图j是不正确的。

解决缠绕问题的办法就是把0添加到两个函数中,使他们具有相同的长度,用P来表示,P满足:

P\geqslant A+B-1

其中,A,B表示两个函数分别具有A个样本和B个样本。

在上面的例子中,每个函数有400个点,则使用的最小值P = 799,我们要在每个函数的结尾添加399个0,称为0填充

类似的,在二维情况下也通过0填充来解决缠绕问题,令f(x,y)和h(x,y)分别是大小为A*B和C*D像素的阵列,则需满足:

f_{p}(x,y) = \begin{cases} f(x,y) & 0\leqslant x\leqslant A-1,0\leqslant y\leqslant B-1\\ 0 & A\leqslant x \leqslant P\ or \ B \leqslant y \leqslant Q \end{cases}

h_{p}(x,y) = \begin{cases} h(x,y) & 0 \leqslant x \leqslant C-1,0 \leqslant y \leqslant D-1 \\ 0 & C \leqslant x \leqslant P\ or \ D \leqslant y \leqslant Q \end{cases}

其中,

P \geqslant A+C-1

Q \geqslant B+D -1

一般说来,DFT算法对偶数尺寸的阵列执行较快,因此最好选择P和Q为满足上面方程的最小偶整数。通过上面的0填充可以解决二维卷积的缠绕问题。

待办计划:卷起来吧,少年!
我们记账:年薪50w够花么?

 

参考资料:冈萨雷斯《数字图像处理》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值