机器学习--回归算法--线性回归算法理论

本文深入探讨了线性回归算法的核心思想,包括数据如何拟合线性模型以及最小化误差。介绍了模型构建过程,如极大似然原理,并讨论了解析解的限制。接着,文章阐述了过拟合和欠拟合的问题及其解决方案,如Ridge、Lasso和ElasticNet回归。最后,探讨了线性回归的评价指标和局部加权线性回归的优缺点。
摘要由CSDN通过智能技术生成

 

目录

一 回归算法核心思想

1 符合线性模型

2 数据距离拟合超平面的直线距离最小

二 回归算法模型

1 前提要求

1 )线性模型

2)残差分布

3 )极大似然原理

2 模型构建

3 最小二乘解析解的限制问题

1)解析解要求X^T*X矩阵可逆

2)求逆矩阵困难问题

三 模型过拟合与欠拟合问题

1 数据拟合中一般出现欠拟合与过拟合问题

2 欠拟合出现的原因以及解决方法

1)欠拟合出现的一般原因

2)欠拟合问题的解决方法

3 过拟合出现的原因以及解决方法

1)过拟合出现的一般原因

2)过拟合问题的解决方法

4 线性模型过拟合问题(在算法学习上做出限制)

1)Ridge回归

2)Lasso回归

3)ElasticNet回归

4)三种方法的优劣对比

四  线性回归算法的常用评价指标

1 MSE(越趋于0越好,取值范围为0到正无穷)

2 RMSE(越趋于0越好,取值范围为0到正无穷)

3 MAE(越趋于0越好,取值范围为0到正无穷)

4 R^2(越趋于1越好,取值范围为负无穷到1)

五 局部加权线性回归(不推荐使用)

1 重定义损失函数

2 权重w^i(指数衰减函数)

3 缺点(非参数学习,即参数不固定)


一 回归算法核心思想

1 符合线性模型

即特征集X与目标属性Y之间满足线性关系,符合线性模型

2 数据距离拟合超平面的直线距离最小

期望确定某个超平面,使得训练集数据均匀分布于超平面两侧,且距离超平面直线距离最小

二 回归算法模型

1 前提要求

1 )线性模型

y^{^{(i)}}=\theta ^{T}x^{^{(i)}}+\epsilon_{i}   (y^{^{(i)}}\approx \theta ^{T}x^{^{(i)}},截距\theta _{0}以包含在内)

注意:y^{^{(i)}}x^{^{(i)}}\epsilon_{i}均为随机变量,\theta为系数,且\epsilon_{i}满足独立同分布

2)残差分布

 \epsilon_{i}\sim N(0,\sigma ^{2}),根据中心极限定理决定

3 )极大似然原理

假设一场试验中,发生A结果,并未发生B结果或者其他结果,那么说明该试验对A有利,进而数学上可以表达为p(A)=p(A|\theta ^{'}),其中\theta ^{'}为有利于A的条件

2 模型构建

第一步:残差的联合概率密度函数

\epsilon ^{(i)}\sim N(0,\sigma ^2)\rightarrow p(\epsilon ^{(i)})=\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(\epsilon ^{(i)})^{2}}{2\sigma ^2}}

\Rightarrow p(\epsilon ^{(i)})=\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}}

\Rightarrow p(\epsilon)=\prod_{i=1}^{m}p(\epsilon^{(i)})=\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}}

\Rightarrow p(\epsilon)=p(y^{(i)}|x^{(i)},\theta)=\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}}

第二步:构建对数似然函数

L(\theta)=\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}}\rightarrow l(\theta)=logL(\theta)=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}})

l(\theta)=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}})

=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma })+\sum_{i=1}^{m}log(e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}})

=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma })+\sum_{i=1}^{m}log(e^{-\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}})

=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma })-\sum_{i=1}^{m}\frac{(y^{(i)}-\theta ^{T}x^{(i)})^{2}}{2\sigma ^2}

=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma })-\frac{1}{2\sigma ^2}\sum_{i=1}^{m}(y^{(i)}-\theta ^{T}x^{(i)})^{2}

\Rightarrow l(\theta)=\sum_{i=1}^{m}log(\frac{1}{\sqrt{2\pi }\sigma })-\frac{1}{2\sigma ^2}\sum_{i=1}^{m}(y^{(i)}-\theta ^{T}x^{(i)})^{2}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值