用Julia 语言写一个图神经网络示例

这篇博客介绍了如何在Julia编程环境中利用Flux库构建和训练一个简单的神经网络。首先,需要安装Flux包,然后定义神经网络结构,包括全连接层和softmax层。接着,设置损失函数为均方误差,选择ADAM优化器进行训练。最后,通过Flux.train!函数执行训练过程。这是一个基础示例,实际应用中还需考虑更多细节如数据预处理和超参数调优。
摘要由CSDN通过智能技术生成

首先, 你需要安装 Julia 和 Flux 包. Flux 是 Julia 语言中用于构建和训练神经网络的库.

using Pkg
Pkg.add("Flux")

然后, 你可以使用 Flux 包中的函数来构建一个神经网络:

using Flux

# 定义神经网络的结构
m = Chain(
  Dense(10, 3, relu),
  Dense(3, 2),
  softmax)

# 定义损失函数和优化器
loss(x, y) = Flux.mse(m(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值