使用贪心策略求解tsp问题的python代码

以下是使用贪心策略求解TSP问题的Python代码:

import numpy as np

def tsp_greedy(distances):
    n_cities = distances.shape[0]
    current_city = 0
    unvisited_cities = set(range(1, n_cities))
    path = [current_city]
    total_distance = 0
    for i in range(n_cities - 1):
        nearest_city = min(unvisited_cities, key=lambda city: distances[current_city][city])
        unvisited_cities.remove(nearest_city)
        path.append(nearest_city)
        total_distance += distances[current_city][nearest_city]
        current_city = nearest_city
    total_distance += distances[current_city][0]
    path.append(0)
    return path, total_distance

# Example usage
distances = np.array([[0, 2, 4, 8], [2, 0, 2, 5], [4, 2, 0, 7], [8, 5, 7, 0]])
path, distance = tsp_greedy(distances)
print("Path:", path)
print("Distance:", distance)

请注意,这只是一种简单的贪心策略,并不能保证得到最优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值