详细描述resnet20的结构

ResNet-20是基于20个残差模块的深度学习模型,每个模块含两个卷积层和一个跳跃连接。网络尺寸逐步减半,最终通过全局平均池化和Softmax层进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ResNet-20是一种深度残差网络,它由20个残差模块组成,每个模块由2个卷积层和一个跳跃连接组成,第一个卷积层的输入尺寸为224x224,第二个卷积层的输入尺寸为112x112,第三个卷积层的输入尺寸为56x56,第四个卷积层的输入尺寸为28x28,第五个卷积层的输入尺寸为14x14,最后一层卷积层的输出尺寸为7x7。每个模块的输出尺寸相同,每个模块的输出由一个1x1的卷积层输出,最后一层的输出经过全局平均池化层和Softmax层输出分类结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值