SMOTE算法(Synthetic Minority Over-sampling Technique)是一种用于解决数据集不平衡问题的算法。它主要是通过生成新的数据点来增加少数类的样本数量,以提高分类器的效果。
下面是一个使用 Python 实现 SMOTE 算法的示例代码:
from imblearn.over_sampling import SMOTE
# 建立SMOTE模型
smote = SMOTE(random_state=42)
# 将训练集进行SMOTE处理
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
在这个代码中,X_train
和 y_train
分别表示训练集的特征和标签。通过调用 SMOTE
类的 fit_resample
方法,可以对训练集进行SMOTE处理,生成新的训练集 X_train_resampled
和 y_train_resampled
。
需要注意的是,这个代码中使用了 imbalanced-learn 库中的 SMOTE 类来实现 SMOTE 算法。如果您的环境中没有安装这个库,可以使用 pip install imbalanced-learn
命令进行安装。