用Pytorch写AlexNet代码

本文介绍了如何在PyTorch中实现AlexNet网络,涉及定义网络结构,包括卷积层(nn.Conv2d)和池化层(nn.MaxPool2d),以及网络的classifier部分,如Dropout和全连接层。
摘要由CSDN通过智能技术生成

在 PyTorch 中实现 AlexNet 网络的步骤如下:

  1. 定义 AlexNet 的网络结构: 首先, 你需要定义 AlexNet 的网络结构, 包括每一层的输入输出尺寸以及每一层使用的卷积核的大小和数量, 池化层的大小等. 例如, AlexNet 的第一层是一个卷积层, 其输入图像的大小为 224x224, 卷积核的大小为 11x11, 卷积核的数量为 96, 步长为 4.

  2. 定义卷积层和池化层: 使用 PyTorch 的 nn.Conv2d 和 nn.MaxPool2d 模块定义 AlexNet 中的卷积层和池化层. 例如, 你可以使用如下代码定义 AlexNet 的第一层卷积层:

import torch.nn as nn

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值