LSTM AutoEncoder简介
基础的AutoEncoder可以参考:https://blog.csdn.net/weixin_35757704/article/details/118457110
而LSTM AutoEncoder
是将原始的全连接变成了LSTM,然后构造出来的AutoEncoder模型,输入与输出是一样的数据为最佳
LSTM AutoEncoder 实现
博主发现网上对于LSTM AutoEncoder的版本都不一样,通常来讲有:
- encoder与decoder都是:lstm
- encoder是 lstm + fc ; decoder是 fc + lstm
以下是两种网络架构:
基本LSTM AutoEncoder网络结构
这个结构比较简单,就是encoder的时候过一个lstm,decoder的时候再过一个lstm
class LstmAutoEncoder(nn.Module):
def __init__(self, input_layer=300, hidden_layer=100, batch_size=20):
super(LstmAutoEncoder, self).__init__()
self.input_layer = input_layer
self.hidden_layer = hidden_layer
self.batch_size = batch_size
self.encoder_lstm = nn.LSTM(self.input_layer, self.hidden_layer, batch_first=True)
self.decoder_lstm = nn.LSTM(self.hidden_layer, self.input_layer, batch_first=True)
def forward(self, input_x):
input_x = input_x.view(len(input_x), 1, -1)
# encoder
encoder_lstm, (n, c) = self.encoder_lstm(input_x,
(torch.zeros(1, self.batch_size, self.hidden_layer),
torch.zeros(1, self.batch_size, self.hidden_layer)))
# decoder
decoder_lstm, (n, c) = self.decoder_lstm(encoder_lstm,
(torch.zeros(1, self.batch_size, self.input_layer),
torch.zeros(1, self.batch_size, self.input_layer)))
return decoder_lstm.squeeze()
LSTM+Fc AutoEncoder网络结构
这个网络结构就是:
- 在encoder的时候过一个lstm,然后接一个全连接,最后用relu激活函数;
- 在decoder的时候先过全连接,然后用relu的激活函数,最后接lstm
class LstmFcAutoEncoder(nn.Module):
def __init__(self, input_layer=300, hidden_layer=100, batch_size=20):
super(LstmFcAutoEncoder, self).__init__()
self.input_layer = input_layer
self.hidden_layer = hidden_layer
self.batch_size = batch_size
self.encoder_lstm = nn.LSTM(self.input_layer, self.hidden_layer, batch_first=True)
self.encoder_fc = nn.Linear(self.hidden_layer, self.hidden_layer)
self.decoder_lstm = nn.LSTM(self.hidden_layer, self.input_layer, batch_first=True)
self.decoder_fc = nn.Linear(self.hidden_layer, self.hidden_layer)
self.relu = nn.ReLU()
def forward(self, input_x):
input_x = input_x.view(len(input_x), 1, -1)
# encoder
encoder_lstm, (n, c) = self.encoder_lstm(input_x,
# shape: (n_layers, batch, hidden_size)
(torch.zeros(1, self.batch_size, self.hidden_layer),
torch.zeros(1, self.batch_size, self.hidden_layer)))
encoder_fc = self.encoder_fc(encoder_lstm)
encoder_out = self.relu(encoder_fc)
# decoder
decoder_fc = self.relu(self.decoder_fc(encoder_out))
decoder_lstm, (n, c) = self.decoder_lstm(decoder_fc,
(torch.zeros(1, 20, self.input_layer),
torch.zeros(1, 20, self.input_layer)))
return decoder_lstm.squeeze()
案例代码
import torch
import torch.nn as nn
import torch.utils.data as Data
def get_train_data():
"""得到训练数据,这里使用随机数生成训练数据,由此导致最终结果并不好"""
def get_tensor_from_pd(dataframe_series) -> torch.Tensor:
return torch.tensor(data=dataframe_series.values)
import numpy as np
import pandas as pd
from sklearn import preprocessing
# 生成训练数据x并做归一化后,构造成dataframe格式,再转换为tensor格式
df = pd.DataFrame(data=preprocessing.MinMaxScaler().fit_transform(np.random.randint(0, 10, size=(2000, 300))))
y = pd.Series(np.random.randint(0, 2, 2000))
return get_tensor_from_pd(df).float(), get_tensor_from_pd(y).float()
class LstmAutoEncoder(nn.Module):
def __init__(self, input_layer=300, hidden_layer=100, batch_size=20):
super(LstmAutoEncoder, self).__init__()
self.input_layer = input_layer
self.hidden_layer = hidden_layer
self.batch_size = batch_size
self.encoder_lstm = nn.LSTM(self.input_layer, self.hidden_layer, batch_first=True)
self.decoder_lstm = nn.LSTM(self.hidden_layer, self.input_layer, batch_first=True)
def forward(self, input_x):
input_x = input_x.view(len(input_x), 1, -1)
# encoder
encoder_lstm, (n, c) = self.encoder_lstm(input_x,
(torch.zeros(1, self.batch_size, self.hidden_layer),
torch.zeros(1, self.batch_size, self.hidden_layer)))
# decoder
decoder_lstm, (n, c) = self.decoder_lstm(encoder_lstm,
(torch.zeros(1, self.batch_size, self.input_layer),
torch.zeros(1, self.batch_size, self.input_layer)))
return decoder_lstm.squeeze()
class LstmFcAutoEncoder(nn.Module):
def __init__(self, input_layer=300, hidden_layer=100, batch_size=20):
super(LstmFcAutoEncoder, self).__init__()
self.input_layer = input_layer
self.hidden_layer = hidden_layer
self.batch_size = batch_size
self.encoder_lstm = nn.LSTM(self.input_layer, self.hidden_layer, batch_first=True)
self.encoder_fc = nn.Linear(self.hidden_layer, self.hidden_layer)
self.decoder_lstm = nn.LSTM(self.hidden_layer, self.input_layer, batch_first=True)
self.decoder_fc = nn.Linear(self.hidden_layer, self.hidden_layer)
self.relu = nn.ReLU()
def forward(self, input_x):
input_x = input_x.view(len(input_x), 1, -1)
# encoder
encoder_lstm, (n, c) = self.encoder_lstm(input_x,
# shape: (n_layers, batch, hidden_size)
(torch.zeros(1, self.batch_size, self.hidden_layer),
torch.zeros(1, self.batch_size, self.hidden_layer)))
encoder_fc = self.encoder_fc(encoder_lstm)
encoder_out = self.relu(encoder_fc)
# decoder
decoder_fc = self.relu(self.decoder_fc(encoder_out))
decoder_lstm, (n, c) = self.decoder_lstm(decoder_fc,
(torch.zeros(1, 20, self.input_layer),
torch.zeros(1, 20, self.input_layer)))
return decoder_lstm.squeeze()
if __name__ == '__main__':
# 得到数据
x, y = get_train_data()
train_loader = Data.DataLoader(
dataset=Data.TensorDataset(x, y), # 封装进Data.TensorDataset()类的数据,可以为任意维度
batch_size=20, # 每块的大小
shuffle=True, # 要不要打乱数据 (打乱比较好)
num_workers=2, # 多进程(multiprocess)来读数据
)
# 建模三件套:loss,优化,epochs
model = LstmAutoEncoder() # lstm
# model = LstmFcAutoEncoder() # lstm+fc模型
loss_function = nn.MSELoss() # loss
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 优化器
epochs = 150
# 开始训练
model.train()
for i in range(epochs):
for seq, labels in train_loader:
optimizer.zero_grad()
y_pred = model(seq).squeeze() # 压缩维度:得到输出,并将维度为1的去除
single_loss = loss_function(y_pred, seq)
# 若想要获得类别,二分类问题使用四舍五入的方法即可:print(torch.round(y_pred))
single_loss.backward()
optimizer.step()
print("Train Step:", i, " loss: ", single_loss)
# 每20次,输出一次前20个的结果,对比一下效果
if i % 20 == 0:
test_data = x[:20]
y_pred = model(test_data).squeeze() # 压缩维度:得到输出,并将维度为1的去除
print("TEST: ", test_data)
print("PRED: ", y_pred)
print("LOSS: ", loss_function(y_pred, test_data))