leetcode-89. Gray Code

题目描述(中等难度)

在这里插入图片描述
生成 n 位格雷码,所谓格雷码,就是连续的两个数字,只有一个 bit 位不同。

解法一 动态规划

按照动态规划或者说递归的思路去想,也就是解决了小问题,怎么解决大问题。

我们假设我们有了 n = 2 的解,然后考虑怎么得到 n = 3 的解。

n = 2 的解
00 - 0
10 - 2
11 - 3
01 - 1

如果再增加一位,无非是在最高位增加 0 或者 1,考虑先增加 0。由于加的是 0,其实数值并没有变化。

n = 3 的解,最高位是 0
000 - 0
010 - 2
011 - 3
001 - 1

再考虑增加 1,在 n = 2 的解基础上在最高位把 1 丢过去?

n = 3 的解
000 - 0
010 - 2
011 - 3
001 - 1  

------------- 下面的是新增的
100 - 4
110 - 6
111 - 7
101 - 5

似乎没这么简单哈哈,第 4 行 001 和新增的第 5 行 100,有 3 个 bit 位不同了,当然不可以了。怎么解决呢?

很简单,第 5 行新增的数据最高位由之前的第 4 行的 0 变成了 1,所以其它位就不要变化了,直接把第 4 行的其它位拉过来,也就是 101。

接下来,为了使得第 6 行和第 5 行只有一位不同,由于第 5 行拉的第 4 行的低位,而第 4 行和第 3 行只有一位不同。所以第 6 行可以把第 3 行的低位拿过来。其他行同理,如下图。

在这里插入图片描述
蓝色部分由于最高位加的是 0 ,所以它的数值和 n = 2 的所有解的情况一样。而橙色部分由于最高位加了 1,所以值的话,就是在其对应的值上加 4,也就是 2 2 2^{2} 22 ,即 2 3 − 1 2^{3-1} 231 ,也就是 1 << ( n - 1) 。所以我们的算法可以用迭代求出来了。

所以如果知道了 n = 2 的解的话,如果是 { 0, 1, 3, 2},那么 n = 3 的解就是 { 0, 1, 3, 2, 2 + 4, 3 + 4, 1 + 4, 0 + 4 },即 { 0 1 3 2 6 7 5 4 }。之前的解直接照搬过来,然后倒序把每个数加上 1 << ( n - 1) 添加到结果中即可。

public List<Integer> grayCode(int n) {
    List<Integer> gray = new ArrayList<Integer>();
    gray.add(0); //初始化 n = 0 的解
    for (int i = 0; i < n; i++) {
        int add = 1 << i; //要加的数
        //倒序遍历,并且加上一个值添加到结果中
        for (int j = gray.size() - 1; j >= 0; j--) {
            gray.add(gray.get(j) + add);
        }
    }
    return gray;
}

时间复杂度: O ( 2 n ) O\left(2^{n}\right) O(2n),因为有这么多的结果。

空间复杂度:O(1)。

解法二 直接推导

解法一我觉得,在不了解格雷码的情况下,还是可以想到的,下边的话,应该是之前了解过格雷码才写出来的。看下维基百科提供的一个生成格雷码的思路。

以二进制为 0
值的格雷码为第零项,第一项改变最右边的位元,第二项改变右起第一个为1的位元的左边位元,第三、四项方法同第一、二项,如此反复,即可排列出n个位元的格雷码。

以 n = 3 为例。

0 0 0 第零项初始化为 0。

0 0 1 第一项改变上一项最右边的位元

0 1 1 第二项改变上一项右起第一个为 1 的位元的左边位

0 1 0 第三项同第一项,改变上一项最右边的位元

1 1 0 第四项同第二项,改变最上一项右起第一个为 1 的位元的左边位

1 1 1 第五项同第一项,改变上一项最右边的位元

1 0 1 第六项同第二项,改变最上一项右起第一个为 1 的位元的左边位

1 0 0 第七项同第一项,改变上一项最右边的位元

思路有了,代码自然也就出来了。

public List<Integer> grayCode2(int n) {
    List<Integer> gray = new ArrayList<Integer>();
    gray.add(0); //初始化第零项
    for (int i = 1; i < 1 << n; i++) {
        //得到上一个的值
        int previous = gray.get(i - 1);
        //同第一项的情况
        if (i % 2 == 1) {
            previous ^= 1; //0000001 做异或,使得最右边一位取反
            gray.add(previous);
        //同第二项的情况
        } else {
            int temp = previous;
            //寻找右边起第第一个为 1 的位元
            for (int j = 0; j < n; j++) {
                if ((temp & 1) == 1) {
                    //00001000000 类似这样的数做异或,使得相应位取反
                    previous = previous ^ (1 << (j + 1));
                    gray.add(previous);
                    break;
                }
                temp = temp >> 1;
            }
        }
    }
    return gray;
}

时间复杂度:由于每添加两个数需要找第一个为 1 的位元,需要 O(n),所以 O ( 2 n ) O\left(2^{n}\right) O(2n)

空间复杂度:O(1)。

解法三 公式

二进制转成格雷码有一个公式。
在这里插入图片描述
所以我们遍历 0 到 2 n − 1 2^{n}-1 2n1 ,然后利用公式转换即可。即最高位保留,其它位是当前位和它的高一位进行异或操作。

public List<Integer> grayCode(int n) {
    List<Integer> gray = new ArrayList<Integer>();
    for(int binary = 0;binary < 1 << n; binary++){
        gray.add(binary ^ binary >> 1);
    }
    return gray;
}

时间复杂度: O ( 2 n ) O\left(2^{n}\right) O(2n),因为有这么多的结果。

空间复杂度:O(1)。

参考文献

1.https://zhuanlan.zhihu.com/p/69802530
2.https://leetcode-cn.com/problems/gray-code/submissions/

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安替-AnTi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值