题目描述(简单难度)
给一个数组,存在一个数字超过了半数,找出这个数。
解法一
这种计数问题,直接就会想到HashMap
,遍历过程中统计每个数字出现的个数即可。可以确定的是,超过半数的数字一定有且只有一个。所以在计数过程中如果出现了超过半数的数字,我们可以立刻返回。
import java.util.HashMap;
public class Majority_Element {
public static int majorityElement(int[] nums){
HashMap<Integer,Integer> map = new HashMap<>();
int n =nums.length;
for(int i=0;i<nums.length;i++){
int before=map.getOrDefault(nums[i],0);
if(before==n/2){
return nums[i];
}
map.put(nums[i],before+1);
}
//顺便返回一个
return -1;
}
public static void main(String args[]){
int[]nums={2,2,1,1,1,2,2};
int ans = majorityElement(nums);
System.out.print(ans);
}
}
上边的解法时间复杂度是 O(n),同时也需要 O(n) 的空间复杂度。所以下边讨论在保证时间复杂度不变的情况下,空间复杂度为 O(1) 的解法。
解法二 摩尔投票法
1980 年由 Boyer 和 Moore 两个人提出来的算法,英文是 Boyer-Moore Majority Vote Algorithm。
算法思想很简单,但第一个想出来的人是真的强。
我们假设这样一个场景,在一个游戏中,分了若干个队伍,有一个队伍的人数超过了半数。所有人的战力都相同,不同队伍的两个人遇到就是同归于尽,同一个队伍的人遇到当然互不伤害。
这样经过充分时间的游戏后,最后的结果是确定的,一定是超过半数的那个队伍留在了最后。
而对于这道题,我们只需要利用上边的思想,把数组的每个数都看做队伍编号,然后模拟游戏过程即可。
group
记录当前队伍的人数,count
记录当前队伍剩余的人数。如果当前队伍剩余人数为 0
,记录下次遇到的人的所在队伍号。
public int majorityElement(int[] nums) {
int count = 1;
int group = nums[0];
for (int i = 1; i < nums.length; i++) {
//当前队伍人数为零,记录现在遇到的人的队伍号
if (count == 0) {
count = 1;
group = nums[i];
continue;
}
//现在遇到的人和当前队伍同组,人数加 1
if (nums[i] == group) {
count++;
//遇到了其他队伍的人,人数减 1
} else {
count--;
}
}
return group;
}
参考文献
- https://zhuanlan.zhihu.com/p/93208809