132. Palindrome Partitioning II

该博客介绍了一种利用动态规划算法解决字符串回文分割的问题,旨在找到将字符串分割成最少回文子串的方法。提供的Java和Python代码实现分别展示了如何构建动态规划表格并确定最小分割次数。博客中还引用了两个在线资源作为参考。
摘要由CSDN通过智能技术生成
题目描述:困难

在这里插入图片描述
给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。
返回符合要求的 最少分割次数 。

解法 动态规划

cut[i] is the minimum of cut[j - 1] + 1 (j <= i), if [j, i] is palindrome.
If [j, i] is palindrome, [j + 1, i - 1] is palindrome, and c[j] == c[i].

a   b   a   |   c  c
                j  i
       j-1  |  [j, i] is palindrome
   cut(j-1) +  1

在这里插入图片描述

Java
class Solution {
    public int minCut(String s) {
        char[] c = s.toCharArray();
        int n = c.length;
        int[] cut = new int[n];
        boolean[][] pal =new boolean[n][n];

        for(int i = 0;i < n;i++){
            int min = i;
            for(int j=0;j <= i;j++){
                if(c[j] == c[i] &&(j+1 > i-1 || pal[j+1][i-1])){
                    pal[j][i] = true;
                    min = j==0 ? 0:Math.min(min,cut[j-1] + 1);
                }
            }
            cut[i] = min;
        }
        return cut[n-1];
    }
}

在这里插入图片描述

Python
class Solution(object):
    def minCut(self, s):
        c = list(s)
        n = len(c)
        cut = [0 for i in range(n)]# 数组采用for循环,不调用numpy
        pal = [[False for i in range(n)] for j in range(n)]

        for i in range(n):
            min_num = i
            for j in range(0,i+1):
                if(c[j] == c[i] and (j + 1 > i - 1 or pal[j + 1][i - 1])):
                    pal[j][i] = True
                    min_num=0 if j==0 else min(min_num,cut[j-1]+1)
            cut[i] = min_num
        return cut[n - 1]    

在这里插入图片描述

参考文献
  • https://www.bilibili.com/video/BV1NJ411v7k9?from=search&seid=17040759617716118007
  • https://leetcode.com/problems/palindrome-partitioning-ii/discuss/42213/Easiest-Java-DP-Solution-(97.36)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安替-AnTi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值