相对于「 基于词典的分析 」,「 基于机器学习 」的就不需要大量标注的词典,但是需要大量标记的数据,比如: 还是下面这句话,如果它的标签是: 服务质量 - 中 (共有三个级别,好、中、差) �r(�s-�t)�q,其是机器学习,通过大量已经标签的数据训练出
相对于「 基于词典的分析 」,「 基于机器学习 」的就不需要大量标注的词典,但是需要大量标记的数据,比如:
还是下面这句话,如果它的标签是:
服务质量 - 中 (共有三个级别,好、中、差)
�r(�s-�t)�q,其是机器学习,通过大量已经标签的数据训练出一个模型,
然后你在输入一条评论,来判断标签级别
宁馨的点评 国庆活动,用62开头的信用卡可以6.2元买一个印有银联卡标记的冰淇淋,
有香草,巧克力和抹茶三种口味可选,我选的是香草口味,味道很浓郁。
另外任意消费都可以10元买两个马卡龙,个头虽不是很大,但很好吃,不是很甜的那种,不会觉得腻。
标签:服务质量 - 中
朴素贝叶斯1、贝叶斯定理假设对于某个数据集,随机变量C表示样本为C类的概率,F1表示测试样本某特征出现的概率,套用基本贝叶斯公式,则如下所示:
上式表示对于某个样本,特征F1出现时,该样本被分为C类的条件概率。那么如何用上式来对测试样本分类呢?