重合度和滑动率是影响齿轮副平稳运行的关键参数,合理设计重合度与滑动率可以获得高质量的传动齿轮,在保证齿轮连续传动的条件下,减少振动、噪音与齿面间的磨损。
(1) 重合度
重合度 ε 由端面重合度 εα和轴向重合度εβ组成。端面重合度可以用直齿轮传动的重合度计算公式求得,轴向重合度是由轮齿倾斜增加的重合度。
式中,εγ为总重合度;L为实际啮合线长度;b为齿宽;βb为基圆螺旋角;Pbt为端面基圆齿距。
重合度 ε 越大,说明参与啮合的齿数越多,齿轮运行越平稳。重合度对齿轮强度的影响比较复杂。通常情况下,在压力角相同时,重合度增大会使齿轮的抗弯强度和接触强度增大。但通过增大螺旋角增大重合度,对接触强度的影响不明显,甚至有减小接触强度的可能。随着重合度 ε 的加大,齿面间的摩擦损失会增加,一般情况下会使抗胶合强度和抗微点蚀强度降低。
Niemann等人通过试验证明:实际重合度随着载荷的变化而变化,而齿轮的传递误差与实际重合度又有很大关系,也影响齿轮传动噪音的大小。齿轮的实际重合度随着齿轮制造精度、装配精度、载荷的变化而发生变化。
对于直齿轮,Niemann等人通过试验证明,εα=2时,噪声明显降低,重合度大于2后,噪声又开始增加;对于斜齿轮,Niemann等人通过试验指出,εβ为整数时,噪声较低并且对εα的变化不敏感。但也有学者认为εγ或0.5εα+εβ为整数时噪声较低,进一步的信息可查阅相关文献。
(2) 滑动率
齿轮接触点处,两齿面间的相对切向速度(即滑动速度)与该点切向速度的比值称为齿面此点的滑动率。滑动率有以下特点:
1) 滑动率为啮合点位置的函数,其值在0~∞之间变化,节圆处滑动率为零;宋乐民的计算也表明了滑动率是压力角的函数,增大压力角可以减小滑动率;
2) 齿轮在啮合极限点附近啮合时,其滑动率趋于无穷大,齿廓磨损会加剧,所以齿根的滑动率会大于齿顶的滑动率;
3) 齿轮在节圆处滑动率为零,但此处的摩擦系数并不为零。
滑动率是齿轮磨损程度的标志之一,设计要求平衡啮合齿轮的滑动率,使两齿轮的最大滑动率相等,以此来平衡啮合齿轮之间的磨损。
滑动率与节圆速度关系最早见于1954年的前苏联文献,节圆速度大于20m/s时,最大滑动率绝对值小于1.5;节圆速度小于20m/s时。最大滑动率绝对值小于3。
齿轮副的重合度和滑动率推荐使用KISSsoft软件来计算。一般情况下,对于直齿轮传动,重合度要求 ε ≥1.2,滑动率绝对值小于2。