斜齿轮重合度计算公式_齿轮副的重合度和滑动率

重合度与滑动率对齿轮副的平稳运行至关重要。重合度越大,齿轮运行越平稳,但过大可能导致噪音增加和强度降低。滑动率是磨损的指标,平衡滑动率有助于减少磨损。推荐使用KISSsoft软件进行精确计算,一般要求直齿轮重合度ε ≥ 1.2,滑动率绝对值小于2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重合度和滑动率是影响齿轮副平稳运行的关键参数,合理设计重合度与滑动率可以获得高质量的传动齿轮,在保证齿轮连续传动的条件下,减少振动、噪音与齿面间的磨损。

(1) 重合度

重合度 ε 由端面重合度 εα和轴向重合度εβ组成。端面重合度可以用直齿轮传动的重合度计算公式求得,轴向重合度是由轮齿倾斜增加的重合度。

19d1a483260094ab793f39772f29068d.png

式中,εγ为总重合度;L为实际啮合线长度;b为齿宽;βb为基圆螺旋角;Pbt为端面基圆齿距。

重合度 ε 越大,说明参与啮合的齿数越多,齿轮运行越平稳。重合度对齿轮强度的影响比较复杂。通常情况下,在压力角相同时,重合度增大会使齿轮的抗弯强度和接触强度增大。但通过增大螺旋角增大重合度,对接触强度的影响不明显,甚至有减小接触强度的可能。随着重合度 ε 的加大,齿面间的摩擦损失会增加,一般情况下会使抗胶合强度和抗微点蚀强度降低。

Niemann等人通过试验证明:实际重合度随着载荷的变化而变化,而齿轮的传递误差与实际重合度又有很大关系,也影响齿轮传动噪音的大小。齿轮的实际重合度随着齿轮制造精度、装配精度、载荷的变化而发生变化。

对于直齿轮,Niemann等人通过试验证明,εα=2时,噪声明显降低,重合度大于2后,噪声又开始增加;对于斜齿轮,Niemann等人通过试验指出,εβ为整数时,噪声较低并且对εα的变化不敏感。但也有学者认为εγ或0.5εα+εβ为整数时噪声较低,进一步的信息可查阅相关文献。

(2) 滑动率

齿轮接触点处,两齿面间的相对切向速度(即滑动速度)与该点切向速度的比值称为齿面此点的滑动率。滑动率有以下特点:

1) 滑动率为啮合点位置的函数,其值在0~∞之间变化,节圆处滑动率为零;宋乐民的计算也表明了滑动率是压力角的函数,增大压力角可以减小滑动率;

2) 齿轮在啮合极限点附近啮合时,其滑动率趋于无穷大,齿廓磨损会加剧,所以齿根的滑动率会大于齿顶的滑动率;

3) 齿轮在节圆处滑动率为零,但此处的摩擦系数并不为零。

滑动率是齿轮磨损程度的标志之一,设计要求平衡啮合齿轮的滑动率,使两齿轮的最大滑动率相等,以此来平衡啮合齿轮之间的磨损。

滑动率与节圆速度关系最早见于1954年的前苏联文献,节圆速度大于20m/s时,最大滑动率绝对值小于1.5;节圆速度小于20m/s时。最大滑动率绝对值小于3。

齿轮副的重合度和滑动率推荐使用KISSsoft软件来计算。一般情况下,对于直齿轮传动,重合度要求 ε ≥1.2,滑动率绝对值小于2。

### 使用 MATLAB 进行齿轮重合度计算 在 MATLAB 中实现齿轮重合度的计算涉及多个参数,包括模数、齿数、螺旋角等。下面提供一种基于这些参数的计算方法以及相应的代码示例。 #### 参数定义 为了完成此任务,需先设定一些基本变量来描述齿轮几何特性: - `m` 表示模数 (mm) - `z1`, `z2` 分别表示主动轮从动轮的齿数 - `beta` 螺旋角 (°),这里采用弧度制输入到函数中[^1] ```matlab % 定义齿轮参数 m = 3; % 模数, mm z1 = 20; z2 = 40; % 齿数 beta = deg2rad(20); % 将角度转换成弧度 ``` #### 计算理论接触线长度 根据给定条件可以得到单个齿宽上的实际参与工作的部分——即所谓的“有效工作宽度”。对于直齿轮而言这等于整个齿宽;但对于齿轮来说,则取决于其螺旋角的影响范围内的那一段距离。 ```matlab function Lw = calc_effective_width(beta, m, z) % beta: spiral angle in radians % m: module % z: number of teeth Pb = pi * m / cos(beta); phi_tan = atan(tand(degrees(pi/z))); Lw = Pb .* tan(phi_tan + beta); end ``` #### 计算总重叠系数 εα 法向载荷分布不均匀系数εβ 这两个值共同决定了最终的整体重合度。其中前者反映了沿轴向方向上相邻两对齿之间是否有足够的交集以维持连续传动;后者则衡量了由于倾造成的力矩不平衡程度。 ```matlab function [epsilon_alpha, epsilon_beta] = calculate_overlap_ratios(Lw, m, z1, z2, beta) % Calculate transverse overlap ratio epsilon_alpha = Lw ./ (pi*m); % Calculate normal load distribution unevenness factor epsilon_beta = abs(cos(beta)) .*(z1+z2)/(sqrt(z1*z2)); end ``` #### 主程序调用上述子功能并输出结果 最后,在主脚本里依次调用上面创建的功能模块,并打印出所需的重合度数值。 ```matlab Lw = calc_effective_width(beta,m,z1); [epsilon_alpha, epsilon_beta] = calculate_overlap_ratios(Lw,m,z1,z2,beta); fprintf('Transverse Overlap Ratio (Epsilon Alpha): %.4f\n', epsilon_alpha); fprintf('Normal Load Distribution Unevenness Factor(Epsilon Beta): %.4f\n', epsilon_beta); ``` 通过这种方式可以在MATLAB环境中较为精确地模拟齿轮系统的运行状态及其性能指标之一—重合度的变化情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值