MATLAB实现:多目标优化算法合集

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:在工程设计、数据分析和机器学习等应用中,优化算法起着关键作用。本合集介绍了五种多目标优化算法的MATLAB实现:MOSSA、MOALO、MODA、MOSMA和MOWOA。这些算法针对具有多个相互冲突目标的优化问题,旨在找到一组Pareto最优解集。算法通过模拟生物行为或群体特性来搜索最优解集,适用于不同类型的多目标优化问题。合集中的代码具有详细的注释,帮助研究者和工程师理解和应用这些算法,以解决实际问题。

1. 多目标优化算法概述

在介绍多目标优化算法之前,让我们先来理解一下多目标优化的基本概念。多目标优化是指在一组相互矛盾的目标之间寻找最优解的数学过程。它不同于单一目标优化,需要同时考虑多个目标,通过权衡这些目标来找到一组最佳的折衷解。举一个简单的例子:在设计一辆汽车时,我们可能会同时考虑安全性、燃油效率和成本等多个目标,多目标优化算法就能够帮助我们找到最佳设计。

多目标优化问题的特点与挑战在于它通常具有非线性、不确定性、和目标间互斥等特点。在实际应用中,这就意味着我们需要一种机制来平衡这些目标,并处理好复杂性。因此,算法需要具备良好的搜索性能和灵活性来适应问题的不同方面。

多目标优化算法的发展历程与现状显示了这一领域不断进步和深化。从早期的权重法和约束法到现在的进化算法和多目标进化算法,研究者们一直在开发新的技术和理论来应对多目标优化的挑战。当前,多目标优化已经成为人工智能和工程优化领域中最为活跃的研究分支之一。

2. Pareto最优解集的定义和重要性

2.1 Pareto最优解集的概念解析

2.1.1 Pareto优势的数学定义

在多目标优化问题中,Pareto优势是一种评价解集质量的重要概念。具体来说,一个解被称作Pareto优势的,如果不存在其他的解能够在一个目标上表现得更好而不使另一个目标表现得更差。用数学语言描述,给定两个解 ( x ) 和 ( y ),如果 ( x ) 对于所有的目标函数 ( f_i ) 都不大于 ( y ) ,并且至少在一个目标函数上严格小于 ( y ),那么我们称解 ( x ) Pareto支配解 ( y ),记作 ( x \prec y )。一个解被称作非支配的或Pareto最优的,如果不存在任何其他解能够支配它。

2.1.2 Pareto最优解集的性质和特征

Pareto最优解集具有以下性质和特征:首先,Pareto最优解集通常包含多个解,因为存在多个目标时,很难找到一个在所有目标上都最优的单一解。其次,Pareto最优解集中的解在优化的目标之间存在一种权衡,即改进一个目标通常会以牺牲另一个目标为代价,这种现象称为权衡或妥协。再次,Pareto最优解集是一个偏序集合,没有全局的“最佳”解。最后,Pareto最优解集构成了一个几何结构,有时在解空间中形成一个曲线或者一个高维的超曲面。

2.2 Pareto最优解在多目标优化中的作用

2.2.1 解集多样性的保证机制

Pareto最优解集对于多目标优化算法的重要性在于它提供了一个解集多样性的保证机制。由于Pareto最优解集包含多个解,算法可以在这个集合中保持解的多样性,避免陷入局部最优。多样性对于决策者在面对多个目标时进行最终选择至关重要,因为它提供了各种权衡方案供决策者评估和选择。

2.2.2 决策者的偏好信息融合

此外,Pareto最优解集允许将决策者的偏好信息融入到优化过程中。在实际的多目标优化问题中,决策者可能对某些目标有更高的重视程度。通过偏好信息的整合,可以对Pareto最优解集进行进一步筛选,帮助决策者找到更加符合其偏好需求的最优解。这个过程通常通过偏好函数或权重方法来实现。

2.3 Pareto最优解集的评估标准

2.3.1 均匀性和分散性的度量方法

为了评价多目标优化算法在生成Pareto最优解集方面的性能,通常需要使用一些标准来衡量解集的均匀性和分散性。均匀性指解集中的解应该尽量均匀地分布在Pareto前沿上,而分散性则强调解集覆盖整个Pareto前沿的能力。常见的度量方法包括基于网格的均匀性度量、基于最小距离的方法和熵方法等。

2.3.2 收敛性的评价指标

除了均匀性和分散性之外,收敛性是评价Pareto最优解集的另一个重要指标。收敛性衡量算法找到的Pareto最优解集与真实Pareto最优前沿的接近程度。常用的收敛性评价指标包括世代距离(Generation Distance, GD)、逆世代距离(Inverted Generation Distance, IGD)和超体积(Hypervolume, HV)等。超体积特别受到青睐,因为它既考虑了收敛性也考虑了多样性。

至此,我们已经对Pareto最优解集的概念及其在多目标优化中的重要性进行了详细解析。接下来,在第三章中,我们将探讨ZDT测试函数在算法性能评估中的作用。

3. ZDT测试函数在算法性能评估中的作用

3.1 ZDT测试函数系列的介绍

3.1.1 ZDT函数系列的特点

Zitzler-Deb-Thiele (ZDT) 测试函数是一组用于评估多目标优化算法性能的基准测试函数。它们被广泛应用于研究多目标优化算法的收敛性和多样性性能。ZDT函数系列具有以下特点:

  • 标准化 :ZDT函数系列在设计上遵循了特定的规范,使得测试结果更具有可比性。
  • 多峰性 :每个函数都具有多个局部最优解,这使得算法在搜索全局最优解时面临挑战。
  • 多样性 :函数设计考虑了解之间的独立性和多样性,有助于测试算法能否处理复杂的多目标问题。

3.1.2 各ZDT函数的表达式和特性

ZDT系列包含多个不同的测试函数,每个函数都有其独特的数学表达式和优化特性。例如:

  • ZDT1 :具有线性帕累托前沿和非线性偏好的函数。
  • ZDT2 :其帕累托前沿具有凸形状。
  • ZDT3 :帕累托前沿为凸且包含许多局部最优解,模拟了高维优化问题的特性。

3.2 ZDT在多目标优化算法测试中的重要性

3.2.1 评估算法的收敛性和多样性

使用ZDT测试函数可以有效评估算法的收敛速度和是否能够保持解集的多样性。收敛性是指算法找到帕累托最优解集的能力,而多样性则反映了算法产生的解在帕累托前沿上的分布情况。

  • 收敛性评估 :如果一个算法能够快速地接近帕累托前沿,并且能够逐渐减少与真实帕累托前沿之间的距离,则说明该算法具有良好的收敛性。
  • 多样性评估 :解集的多样性可以通过解在帕累托前沿上的分布是否均匀来判断。一个算法如果能保持解集在不同区域都有较好的分布,则说明算法能够保持多样性。

3.2.2 对比不同算法性能的基准

ZDT函数系列为多目标优化算法提供了标准化的性能评估基准。研究者可以使用相同的测试函数集来比较不同算法的表现,从而进行公平的对比分析。

  • 算法比较 :通过在同一组ZDT函数上运行不同的优化算法,研究人员能够比较它们在收敛性和多样性上的差异。
  • 性能排序 :基于ZDT函数得到的性能结果,可以对算法进行排序,确定哪些算法在特定类型的问题上表现更优。

3.3 ZDT测试函数的实际应用案例分析

3.3.1 案例选择与实验设计

实验设计是确保测试结果准确性和有效性的关键。在选择ZDT测试函数时,首先确定研究的目的和需要评估的算法特性。以下是设计一个案例实验的步骤:

  1. 选择ZDT函数 :根据算法特性和优化问题的需要,选择适当的ZDT函数。
  2. 算法选择 :挑选不同类型的多目标优化算法进行比较,如进化算法、粒子群优化和蚁群算法等。
  3. 参数设置 :确定算法的参数设置,确保公平性。
  4. 重复实验 :为了获得统计意义,对每个算法运行多次实验,并记录结果。

3.3.2 实验结果分析与算法评价

实验完成后,收集并分析数据,以评估每个算法在不同测试函数上的表现。分析包括以下几个方面:

  • 收敛曲线 :绘制算法收敛到帕累托前沿的曲线,观察其收敛速度和稳定性。
  • 多样性度量 :计算解集的多样性指标,如平均距离或分布熵。
  • 性能指标 :使用性能指标如超体积(Hypervolume)或GD和IGD指标来综合评价算法性能。

通过上述分析,可以得出以下结论:

  • 算法优势 :确定哪些算法在收敛性和多样性方面表现最佳。
  • 改进建议 :根据实验结果,提出算法改进的具体方向和建议。
  • 实际应用 :为多目标优化问题的求解提供理论依据和实践指导。

4. MATLAB软件在多目标优化算法实现中的应用

4.1 MATLAB软件的优势与工具箱介绍

4.1.1 MATLAB在算法开发中的便捷性

MATLAB,即矩阵实验室(Matrix Laboratory),是一款广泛应用于工程计算、数据分析、算法开发的高级数学软件。它是由美国MathWorks公司出品,特别适合于快速算法原型开发和多目标优化问题的求解。MATLAB的优势在于其强大的数学计算能力、直观的矩阵操作和丰富的内置函数。此外,MATLAB支持图形化界面设计,能够帮助开发者轻松实现算法的可视化,从而更直观地理解算法的行为和结果。

MATLAB的交互式编程环境允许用户在编写代码的同时获得即时的反馈,这对于调试算法和优化程序非常有帮助。在多目标优化领域,MATLAB的便捷性体现在以下几个方面:

  • 快速原型开发 :MATLAB允许快速实现算法逻辑,便于开发人员在短时间内构建算法原型。
  • 高性能计算 :MATLAB底层使用高效的数值计算库,对于复杂数学运算和大规模数据处理具有较高的性能。
  • 丰富的工具箱 :MATLAB提供了大量的工具箱(Toolbox),如Optimization Toolbox、Fuzzy Logic Toolbox等,这些工具箱为多目标优化提供了直接可用的算法和函数。
4.1.2 多目标优化相关的工具箱功能

在MATLAB中,多目标优化相关的工具箱为算法实现提供了强大的支持。这些工具箱不仅包含单目标优化算法,也包括多种用于处理多目标问题的函数和方法。具体来说,这些工具箱主要提供以下功能:

  • 优化问题的建模 :工具箱提供了一系列函数用于定义和构造优化问题,包括目标函数、约束条件等。
  • 优化算法的实现 :多种经典的和现代的多目标优化算法被集成在内,比如NSGA-II、SPEA2等,用户可以直接调用这些算法。
  • 结果分析工具 :工具箱中还包含对优化结果进行分析的工具,例如Pareto前沿的绘制、收敛性分析等。

以上这些功能极大地降低了多目标优化算法的实现难度,使得研究人员和工程师可以更多地关注算法的创新和优化策略的研究,而不是重复地实现基础功能。

4.2 MATLAB在多目标优化算法中的编程实践

4.2.1 编写多目标优化算法的基本框架

在MATLAB中编写多目标优化算法的基本框架可以遵循以下步骤:

  1. 定义目标函数 :用户需要编写目标函数以描述优化问题。在MATLAB中,目标函数可以是一个函数句柄,用于计算决策变量对应的目标值。

  2. 设置优化选项 :MATLAB提供了丰富的选项设置,如算法选择、收敛准则、迭代次数等,用户可以通过 optimoptions 函数进行设置。

  3. 运行优化函数 :使用MATLAB内置的优化函数进行求解,如 gamultiobj 函数用于求解连续空间的多目标优化问题。

以下是一个简单示例的代码框架:

% 定义目标函数
function f = objectiveFunction(x)
    f(1) = x(1)^2 + x(2)^2; % 目标1
    f(2) = (x(1) - 1)^2 + x(2)^2; % 目标2
end

% 设置优化选项
options = optimoptions('gamultiobj', 'PlotFcn', @gaplotpareto, 'Display', 'iter');

% 决策变量的初始值
x0 = [0, 0];

% 运行优化
[x, fval, exitflag, output] = gamultiobj(@objectiveFunction, 2, [], [], [], [], [], [], [], options);

在这段代码中, gamultiobj 是MATLAB中用于多目标优化的函数, objectiveFunction 是我们自定义的目标函数, x0 是优化问题的初始点。通过设置 options ,我们指定了算法的选项,例如 PlotFcn 用于在优化过程中绘制Pareto前沿的变化, Display 设置为 iter 表示在每次迭代后显示优化进度。

4.2.2 MATLAB内置函数和自定义函数的使用

MATLAB内置函数为多目标优化提供了强大支持,但往往需要与自定义函数结合使用来适应特定的问题需求。自定义函数的编写应遵循MATLAB的函数编写规则,利用MATLAB丰富的矩阵运算能力,可以简洁高效地实现目标函数和约束条件。在编写自定义函数时,应该注意以下几点:

  • 向量化操作 :尽量利用MATLAB的向量化能力,避免使用循环,这可以显著提高代码的执行效率。
  • 函数句柄的使用 :通过函数句柄传递自定义函数,以便在优化算法中直接调用。
  • 参数传递 :在自定义函数中,如果需要引用额外的参数,可以使用 @args 来传递。

下面是一个自定义目标函数的示例:

function f = customObjective(x, a)
    f(1) = (x(1) - a)^2 + x(2)^2; % 目标1
    f(2) = x(1)^2 + (x(2) - a)^2; % 目标2
end

调用自定义函数的代码片段可以是:

% 自定义目标函数句柄
a = 1;
fun = @(x) customObjective(x, a);

% 与gamultiobj结合使用
[x, fval, exitflag, output] = gamultiobj(fun, 2, [], [], [], [], [], [], [], options);

在这个例子中,我们创建了一个匿名函数 fun ,它引用了外部变量 a ,并将其作为参数传递给自定义目标函数 customObjective 。这样,我们就可以在多目标优化算法中灵活地使用自定义函数。

4.3 MATLAB的多目标优化算法案例演示

4.3.1 具体算法的MATLAB实现步骤

为了更具体地说明MATLAB在多目标优化算法实现中的应用,我们以一个案例来展示如何使用MATLAB的内置函数实现多目标优化。这里以NSGA-II算法为例,以下是实现NSGA-II算法的基本步骤:

  1. 定义目标函数和约束 :首先需要定义要优化的目标函数和可能存在的约束条件。

  2. 初始化种群 :创建初始种群,其中每个个体代表一组可能的解。

  3. 快速排序和拥挤距离计算 :对种群进行非支配排序,并计算每个个体的拥挤距离。

  4. 选择、交叉和变异操作 :基于排序和拥挤距离,选择优秀的个体进入下一代。通过交叉和变异产生新的种群。

  5. 迭代更新种群 :重复步骤3和步骤4,直至达到终止条件(如迭代次数或收敛性)。

在MATLAB中,可以通过设置 gamultiobj 函数的 PopulationType Options 等参数来模拟NSGA-II算法的这些特性。尽管 gamultiobj 不是NSGA-II的直接实现,但通过适当配置,可以达到类似的效果。

4.3.2 结果可视化和性能分析

结果可视化是评估多目标优化算法性能的重要手段。MATLAB提供的强大的绘图功能可以帮助我们以直观的方式展示Pareto前沿,并分析算法的性能。

  1. 绘制Pareto前沿 :MATLAB的 plot 函数可以用来绘制目标函数空间中解的分布情况,即Pareto前沿。

  2. 分析解的多样性和分布 :通过计算Pareto前沿的均匀性和分散性指标,评估算法的多样性。

  3. 性能比较 :可以使用其他算法运行结果作为基准,通过比较不同算法得到的Pareto前沿来进行性能评估。

以下是绘制Pareto前沿的示例代码:

% 假设x和fval是gamultiobj函数返回的解和目标值
plot(fval(:,1), fval(:,2), 'bo');
xlabel('目标1');
ylabel('目标2');
title('Pareto前沿');
grid on;

在上述代码中,假设 fval 矩阵的每行代表一个解在两个目标上的值。使用蓝色的圆圈 'bo' 标记每个解的位置。通过观察Pareto前沿图,我们可以了解解在目标空间中的分布情况。

综上所述,MATLAB不仅提供了方便的多目标优化算法实现框架,还提供了强大的结果可视化和分析工具。对于从事多目标优化的研究人员和工程师而言,MATLAB是一个非常实用的开发和研究平台。

5. 多目标优化算法的具体实现与应用

在前几章中,我们已经讨论了多目标优化算法的基础知识,包括其基本概念、Pareto最优解集的定义及其重要性,以及ZDT测试函数在算法性能评估中的作用。在本章中,我们将深入探讨几种具体的多目标优化算法,分析它们的原理、实现机制,以及在实际应用中的案例。

5.1 MOSSA算法及其聚群和分散行为原理

5.1.1 MOSSA算法的理论基础

MOSSA(Multi-objective Shuffled Frog Leaping Algorithm)算法是一种模拟青蛙群体觅食行为的多目标优化算法。它结合了粒子群优化算法(PSO)的全局搜索能力和差分进化算法(DE)的快速收敛特性。算法中,青蛙被划分为多个子群体(即“子蛙群”),它们通过“聚群”和“分散”行为在解空间中进行探索和开发。

5.1.2 聚群和分散行为的实现机制

在MOSSA算法中,“聚群”行为借鉴了自然界中青蛙跟随其他青蛙行为的原理。通过青蛙间的相互模仿来促进信息的共享和利用,从而提高算法的探索能力。具体实现时,算法将个体青蛙的适应度与群体平均适应度进行比较,并根据比较结果调整个体的位置,以此来模拟“聚群”行为。

“分散”行为则通过引入随机性来增加解空间的多样性,避免算法过早收敛至局部最优解。在分散阶段,算法会在较优的个体周围随机搜索,这有助于跳出局部最优陷阱,为找到全局最优解提供可能。

代码块示例和解释:

% 假设青蛙群体青蛙的位置向量为frog_positions,适应度向量为frog_fitness
% 初始化参数
lambda = size(frog_positions, 1);  % 蛙群大小
best_positions = frog_positions;   % 全局最优位置
best_fitness = inf(size(frog_fitness));

% 模拟聚群行为
for i = 1:lambda
    % 计算个体适应度与群体平均适应度的差异
    fitness_diff = frog_fitness(i) - mean(frog_fitness);
    if fitness_diff < 0
        % 如果个体适应度低于平均值,则进行聚群行为
        % 更新个体位置...
    end
end

% 模拟分散行为
for i = 1:lambda
    if rand < 0.5  % 以一定概率执行分散行为
        % 进行随机搜索...
    end
end

% 更新全局最优解...

5.2 MOALO算法及其信息素交流和动态更新机制

5.2.1 MOALO算法的策略与设计

MOALO(Multi-objective Ant Lion Optimizer)算法是基于蚁狮捕食行为的多目标优化算法。蚁狮在捕食过程中会挖掘陷阱,等待猎物陷入陷阱中。MOALO算法模仿了这一行为,通过蚁群和蚁狮之间的相互作用来寻找多个目标的最优解。

5.2.2 信息素交流与动态更新的优化流程

在MOALO算法中,信息素的交流和动态更新是关键。蚁群在探索解空间时会留下信息素痕迹,而蚁狮则会利用这些信息素来调整自己的位置。信息素的浓度随着蚂蚁和蚁狮的运动而动态更新,蚂蚁倾向于向信息素浓度高的地方移动,而蚁狮则会更新陷阱的位置来捕捉蚂蚁。

代码块示例和解释:

% 假设蚁群位置为ant_positions,蚁狮位置为lion_position
% 初始化信息素矩阵pheromone

% 模拟蚁群信息素释放过程
for i = 1:length(ant_positions)
    ant_position = ant_positions(i);
    % 释放信息素...
    pheromone(ant_position) = pheromone(ant_position) + delta_pheromone;
end

% 模拟蚁狮捕食过程和信息素更新
% 蚁狮根据信息素浓度来动态更新位置...
lion_position = update_lion_position(pheromone);

% 动态调整信息素浓度...
update_pheromone(pheromone);

5.3 MODA算法及其模仿蜻蜓飞行模式的探索策略

5.3.1 模仿蜻蜓飞行的策略分析

MODA(Multi-objective Dragonfly Algorithm)算法是受蜻蜓群体飞行行为启发的多目标优化算法。蜻蜓在飞行时表现出极强的群体协作能力,MODA算法利用这一特性,通过模拟蜻蜓的飞行和群体行为来实现多目标优化。

5.3.2 探索策略在MODA中的应用与实现

在MODA算法中,探索策略主要体现在蜻蜓飞行的聚集和分离机制上。聚集行为确保了算法的全局搜索能力,而分离行为则增加了种群的多样性。通过对聚集和分离行为的优化,MODA能够在保持多样性的同时,提高算法的收敛速度和解的质量。

代码块示例和解释:

% 假设蜻蜓位置为dragonfly_positions,群体行为参数为attraction和repulsion
% 初始化参数

% 模拟蜻蜓聚集行为
for i = 1:length(dragonfly_positions)
    for j = 1:length(dragonfly_positions)
        if i ~= j
            % 根据吸引力和排斥力调整蜻蜓位置...
            dragonfly_positions(i) = adjust_position(dragonfly_positions(i), dragonfly_positions(j), attraction, repulsion);
        end
    end
end

% 模拟蜻蜓分离行为
% 根据特定策略使蜻蜓远离其他个体...

5.4 MOSMA算法及其模仿黏菌觅食行为的优化过程

5.4.1 黏菌觅食行为的模仿原理

MOSMA(Multi-objective Slime Mould Algorithm)算法模仿了黏菌在觅食过程中展现出的探索和开发行为。黏菌通过不断变化其形状来寻找食物,并通过形成网络结构来避免重复访问已经搜索过的区域。MOSMA利用这一行为模式来进行多目标优化。

5.4.2 MOSMA算法中的优化流程与实例

在MOSMA算法中,优化流程包括黏菌的探索和网络形成两个阶段。在探索阶段,黏菌向食物源方向移动;在形成网络阶段,黏菌则避免重复探索。通过这种方式,算法能够在保持种群多样性的同时,提高解的质量和收敛速度。

代码块示例和解释:

% 假设黏菌位置为slime_positions,食物源为food_sources
% 初始化参数

% 模拟黏菌探索行为
for i = 1:length(slime_positions)
    slime_position = slime_positions(i);
    % 根据食物源位置调整黏菌位置...
    slime_positions(i) = move_towards_food(slime_position, food_sources);
end

% 模拟黏菌网络形成行为
% 根据黏菌间的相互作用调整位置...

5.5 MOWOA算法及其基于鲸鱼行为的搜索策略

5.5.1 鲸鱼行为的模型构建

MOWOA(Multi-objective Whale Optimization Algorithm)算法是基于座头鲸捕食行为的多目标优化算法。座头鲸在捕食过程中展现出螺旋形的迁徙路径和气泡网捕食法,MOWOA利用这一自然现象来模拟解空间的搜索行为。

5.5.2 MOWOA中的搜索策略与效果分析

MOWOA中的搜索策略包括螺旋更新和搜索包围猎物。螺旋更新用于模拟座头鲸螺旋形迁徙路径,而搜索包围猎物则模仿了气泡网捕食法。这些策略的结合有助于算法在保持多样性的同时,有效地搜索并找到最优解。

代码块示例和解释:

% 假设鲸鱼位置为whale_positions,猎物位置为prey_position
% 初始化参数

% 模拟螺旋更新行为
for i = 1:length(whale_positions)
    whale_position = whale_positions(i);
    % 根据螺旋模型调整鲸鱼位置...
    whale_positions(i) = spiral_update(whale_position, prey_position);
end

% 模拟搜索包围猎物行为
% 根据座头鲸的攻击策略调整位置...

在本章中,我们深入探讨了几种多目标优化算法的实现机制,并且通过代码示例来说明这些算法的具体操作。了解了MOSSA、MOALO、MODA、MOSMA和MOWOA算法的理论基础、策略设计以及在实际问题中的应用,为解决复杂的多目标优化问题提供了多样的工具和方法。在后续章节中,我们将进一步分析这些算法的性能评估和优化方法,以及它们在实际场景中的应用案例。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:在工程设计、数据分析和机器学习等应用中,优化算法起着关键作用。本合集介绍了五种多目标优化算法的MATLAB实现:MOSSA、MOALO、MODA、MOSMA和MOWOA。这些算法针对具有多个相互冲突目标的优化问题,旨在找到一组Pareto最优解集。算法通过模拟生物行为或群体特性来搜索最优解集,适用于不同类型的多目标优化问题。合集中的代码具有详细的注释,帮助研究者和工程师理解和应用这些算法,以解决实际问题。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值