Dify 实战教程 | 10分钟搭建你的 Chatflow(数据可视化助手)

本篇我们来聊聊如何使用 Dify 的 Chatflow(对话流程编排器),构建一个Excel 数据可视化助手。在此前的教程中,我们介绍了「聊天助手」和「Agent」构建助手的使用方式,本篇将介绍一种更可控、逻辑更清晰的构建方式——Chatflow 应用

img

一句话区分:聊天助手、Agent 和 Chatflow?

应用类型特点是否适合 Excel 可视化场景
聊天助手单轮对话、轻逻辑控制❌ 功能太轻,无法处理上传文件和复杂逻辑
Agent多步骤任务,支持文件插件✅ 可行但逻辑难控制
Chatflow可视化流程,强控制节点、支持上传变量✅✅ 更适合结构化处理与引导提问

第一步:新建应用,选择 ChatFlow 类型

打开 Dify 控制台,点击【工作室】按钮。

选择应用类型为:ChatFlow,然后点击【创建空白应用】。

img

第二步:填写 Chatflow 信息

进入配置页,填写基本信息:

  • 应用名称:数据可视化助手
  • 应用描述:Excel 数据可视化助手
  • 应用图标:上传符合的小图标

img

第三步:设计对话流程

ChatFlow 顾名思义,就是一个对话流程,对话流程通过一个个节点,引导用户按照我们既定的方向提问,并给出答案。

打开可视化编辑器,我们设计如下流程:

  • 开始节点:用户上传Excel 表格,并填入用户需求

  • 文档提取节点:提取上传的Excle表格数据

  • 并行两个节点

    • 图表判断节点:根据用户需求,判定需要使用哪种图形判断。
    • JSON转换节点:将Excle 数据转换成 Json格式。
  • 图形插件节点:根据“图表类型” + “JSON数据” 生成图表。

  • 输出节点:将图表输出到聊天窗口中。

img

3.1、开始节点

开始节点,提供“Excle”文件上传和用户需求输入。

img

3.2、文档提取节器

文档提取器,用来接收,从“开始节点” 传递过来的用户上传的 Excel 文件。

img

3.3、并行处理
3.3.1、图表类型判断

图表类型判断,使用的是 LLM节点。

根据“开始节点” 中用户输入的用户需求,如:”帮我生成销售数据饼图?” 来判定需要生成的图表类型。

img

3.3.2、JSON转换

“JSON转换” ,也是一个 LLM节点。

“JSON转换“,用来将 Excel 中的数据,转换为JSON格式的数据,方便后边图表插件生成图表。

img

3.4、图表插件“ROOKIE_DATA_ALCHEMY”

ROOKIE_DATA_ALCHEMY 可以直接从插件市场下载

图表插件主要需要的两个参数:

  • JSON 格式的数据,来自于 ”JSON转换“ 节点。
  • 图表类型数据,来自于“图表类型判断器”节点。

img

3.5、输出图表

输出图表,直接输出插件的内容即可。

img

第四步:发布并测试应用

  1. 点击「发布」
  2. 获取 Web 链接或嵌入代码
  3. 在聊天页面进行模拟对话

img

生成销售数据,饼图,

img

总结

Chatflow 是逻辑清晰、结构明确的可视化对话工具。对于数据可视化助手这种需要用户输入多个参数再进行判断输出的任务来说,Chatflow 是远比“聊天助手”更适合的构建方式!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

<think>嗯,用户想了解如何使用Dify处理Excel表格,特别是教程和示例代码。首先,我需要回忆Dify的相关信息,尤其是结合DeepSeek的应用案例。记得Dify是一个低代码平台,可能用于数据处理和可视化。用户提到的参考引用[1]提到了Excel数据一键可视化,使用echarts助手.yml,所以应该围绕这个展开。 首先,用户可能需要基本的步骤,比如准备数据、创建应用、配置工作流。然后,示例代码部分可能需要YAML配置文件的示例,以及如何调用API。这里要注意用户可能对YAML结构不熟悉,需要解释关键参数。同时,用户可能关心如何处理不同的图表类型,比如柱状图、折线图,所以需要给出具体例子。 还要考虑用户可能的后续问题,比如性能优化、错误处理,或者如何处理更复杂的数据。需要确保回答结构清晰,分步骤说明,并附上示例代码和配置文件,让用户能一步步跟着操作。最后,生成的相关问题要覆盖用户可能进一步探索的方向,比如高级功能、自动化处理、数据清洗等。需要检查所有技术细节是否正确,比如YAML语法是否正确,API调用方法是否准确,避免错误信息。</think>### 如何使用 Dify 处理 Excel 表格(教程与示例) #### 一、基础操作流程 1. **数据准备** 将 Excel 文件转换为 CSV 格式或直接上传至 Dify 的数据集模块,支持通过 API 或界面导入[^1]。 2. **创建应用** 在 Dify 控制台选择「新建应用」→「数据处理助手」,配置输入参数(如表格路径、目标图表类型)。 3. **配置工作流** 使用 YAML 文件定义处理流程,示例配置: ```yaml workflow: - step: data_loader type: csv_reader params: file_path: "sales_data.csv" - step: chart_generator type: echarts_builder params: chart_type: bar x_axis: "月份" y_axis: "销售额" ``` #### 二、代码实现示例 ```python from dify_client import DifyAPI # 初始化API连接 client = DifyAPI(api_key="your_api_key") # 执行数据处理任务 response = client.execute_workflow( workflow_config="echarts_assistant.yml", input_files=["sales_data.xlsx"], output_format="html" ) # 保存可视化结果 with open("report.html", "w") as f: f.write(response["visualization"]) ``` #### 三、进阶功能演示 1. **动态图表配置** 通过修改 YAML 实现多图表输出: ```yaml charts: - type: line title: 季度趋势 dimensions: ["Q1", "Q2", "Q3"] - type: pie title: 品类占比 category: "产品类别" ``` 2. **自动化批处理** 添加定时任务配置: ```python client.schedule_task( frequency="daily", trigger_time="02:00", workflow="sales_report" ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值