Dify 实战教程 | 10分钟搭建你的 Chatflow(数据可视化助手)

本篇我们来聊聊如何使用 Dify 的 Chatflow(对话流程编排器),构建一个Excel 数据可视化助手。在此前的教程中,我们介绍了「聊天助手」和「Agent」构建助手的使用方式,本篇将介绍一种更可控、逻辑更清晰的构建方式——Chatflow 应用

img

一句话区分:聊天助手、Agent 和 Chatflow?

应用类型特点是否适合 Excel 可视化场景
聊天助手单轮对话、轻逻辑控制❌ 功能太轻,无法处理上传文件和复杂逻辑
Agent多步骤任务,支持文件插件✅ 可行但逻辑难控制
Chatflow可视化流程,强控制节点、支持上传变量✅✅ 更适合结构化处理与引导提问

第一步:新建应用,选择 ChatFlow 类型

打开 Dify 控制台,点击【工作室】按钮。

选择应用类型为:ChatFlow,然后点击【创建空白应用】。

img

第二步:填写 Chatflow 信息

进入配置页,填写基本信息:

  • 应用名称:数据可视化助手
  • 应用描述:Excel 数据可视化助手
  • 应用图标:上传符合的小图标

img

第三步:设计对话流程

ChatFlow 顾名思义,就是一个对话流程,对话流程通过一个个节点,引导用户按照我们既定的方向提问,并给出答案。

打开可视化编辑器,我们设计如下流程:

  • 开始节点:用户上传Excel 表格,并填入用户需求

  • 文档提取节点:提取上传的Excle表格数据

  • 并行两个节点

    • 图表判断节点:根据用户需求,判定需要使用哪种图形判断。
    • JSON转换节点:将Excle 数据转换成 Json格式。
  • 图形插件节点:根据“图表类型” + “JSON数据” 生成图表。

  • 输出节点:将图表输出到聊天窗口中。

img

3.1、开始节点

开始节点,提供“Excle”文件上传和用户需求输入。

img

3.2、文档提取节器

文档提取器,用来接收,从“开始节点” 传递过来的用户上传的 Excel 文件。

img

3.3、并行处理
3.3.1、图表类型判断

图表类型判断,使用的是 LLM节点。

根据“开始节点” 中用户输入的用户需求,如:”帮我生成销售数据饼图?” 来判定需要生成的图表类型。

img

3.3.2、JSON转换

“JSON转换” ,也是一个 LLM节点。

“JSON转换“,用来将 Excel 中的数据,转换为JSON格式的数据,方便后边图表插件生成图表。

img

3.4、图表插件“ROOKIE_DATA_ALCHEMY”

ROOKIE_DATA_ALCHEMY 可以直接从插件市场下载

图表插件主要需要的两个参数:

  • JSON 格式的数据,来自于 ”JSON转换“ 节点。
  • 图表类型数据,来自于“图表类型判断器”节点。

img

3.5、输出图表

输出图表,直接输出插件的内容即可。

img

第四步:发布并测试应用

  1. 点击「发布」
  2. 获取 Web 链接或嵌入代码
  3. 在聊天页面进行模拟对话

img

生成销售数据,饼图,

img

总结

Chatflow 是逻辑清晰、结构明确的可视化对话工具。对于数据可视化助手这种需要用户输入多个参数再进行判断输出的任务来说,Chatflow 是远比“聊天助手”更适合的构建方式!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 使用 Dify 进行数据查询并生成可视化图表 #### 数据查询部分 为了通过 Dify 实现数据查询功能,可以按照以下方法操作。首先需要登录到 Dify 的账户,并完成工作区的初始化设置[^2]。接着,在仪表盘中选择「聊天流程」选项卡,进入配置界面。在此过程中,可以通过上传 CSV 文件作为示例数据源,这些文件通常是以 Excel 格式保存的数值型文档。 一旦完成了上述步骤,就可以利用 Dify 提供的数据接口来执行具体的查询逻辑。例如,假设有一个名为 `sales_data.csv` 的文件存储销售记录,则可以在脚本中加载该文件并通过 Pandas 库读取其内容: ```python import pandas as pd # 加载本地CSV文件 data = pd.read_csv('sales_data.csv') # 显示前几行以验证数据结构 print(data.head()) ``` 此代码片段展示了如何初步处理输入数据集。 #### 可视化图表创建过程 对于可视化方面的工作流设计,推荐采用 ECharts 或者其他类似的前端库来进行渲染展示。而如果希望简化整个开发周期的话,也可以直接调用由 Dify 自带的支持服务——即它内部封装好的绘图组件[^3]。 以下是基于 Python 和 Mermaid 结合的方式构建简单折线图的一个例子: ```mermaid graph TD; A[January Sales]; B[February Sales]; C[March Sales]; A -->|Value=10k| B; B -->|Value=15k| C; ``` 以上 mermaid 语法定义了一个时间序列上的销售额变化趋势图样式的节点关系网状结构[^1]。当然实际应用当中可能还需要进一步调整样式属性以及动态绑定真实业务指标值等内容。 最后一步便是将所有准备完毕后的素材嵌入 HTML 页面里呈现出来给最终用户查看了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值