手指静脉识别项目
本项目详细介绍请参阅:图像处理创新实践.pdf
本项目开源许可协议:GPL 3.0(除SIFT算法软件包,此部分软件包另有原作者的许可协议)
项目方案设计介绍
本项目实现手指图像的处理和匹配算法,需要处理的数据是本人不同手指的图像,首先经过图像处理,使得指静脉的纹理增强凸显处理,然后将所有的这些图像进行相互间的匹配,检验类内和类间的匹配度,观察其是否能够明显区分开来,并据此计算正确率。
在本项目中,由于是基于算法原型的研究,因此我们选用了操作便捷的Matlab R2019b软件作为运行环境,在Windows 10 Pro for Workstation操作系统中实现算法。
算法分为以下几个过程:
图像预处理过程中,需要增强图像,提取手指区域,为识别做准备。拟采用CLAHE、直方图均衡、二值化等算法,以达到增强图像的效果;拟采用边缘检测算法实现手指的识别和提取
图像的特征提取和匹配过程中,拟采用两类不同的方法。一是局部不变特征提取算法。这些算法具有检测图像中的特征点,并对特征点的局部区域进行描述和匹配的功能。二是针对二值化图像的模板匹配,检测其匹配度。
系统识别性能
SIFT——正确率93.625%
SURF——正确率86.1875%
归一化二维互相关模板匹配——正确率99.5625%
文件结构说明
注意:以下代码中涉及的文件夹需要先自行创建,使用其它数据来源需要先自行更改字符段中涉及的文件夹。代码中的“.\590”文件夹是本人指静脉数据来源文件夹。文件夹目录结构如下:
\