【调研系列】指静脉识别的背景与调研[机器视觉]
我实在不想复制太多,这里我吧我之前写的导出为图片Po上来,如果你想要文档也可以留一下你的邮箱之类的。(除了图1.4和1.13,我是直接从数据网站上截图的,其他我都是用WPS画的,相关的数据来源我均有说明)
文档图
下载链接
下载链接:指静脉背景调研文档(选题背景).pdf
文档
一、选题背景
1.1 相关研究背景
随着信息化技术的高速发展,互联网技术也相应随之不断提高,网络成为当今社会生活一大角色。根据国家网信网的发布的《中国互联网发展状况统计报告》知,互联网与人们的关系日益密切。
互联网技术及人工智能技术的发展进步使得信息安全成为当今社会的一大需求。安防业务应社会之所需,其应用领域不断延拓。根据《2017-2020 年中国安防行业深度评估与投资前景研究报告》,安防物业的市场规模不断增大。
有效的身份认证机制与用户的信息安全至关重要,个体差异性更强的生物特征识别技术因其安全性与便利性在安防业务日渐成熟普遍。生物特征识别技术日益多样化,根据《2016-2020 年中国生物识别技术行业市场现状分析及投资前景预测报告》,目前主要常见的生物特征识别技术包括指纹识别,人脸识别,语音识别,虹膜识别和静脉识别。
从各个生物特征识别技术的应用来看,指纹识别占比最高,人脸、虹膜等识别技术增长迅速。指纹识别占生物识别技术的份额最高,但整体呈下降趋势,而人脸识别、虹膜识别及静脉识别所占份额则不断增长。
根据《2016-2020 年中国生物识别技术行业市场现状分析及投资前景预测报告》,目前,生物特征识别技术主要受众于政府及军方,企业,应用于考勤,警用 AFIS,门禁,智能卡应用,门柜锁的场景中。
针对几大常见的生物特征识别,根据调研结果,本文在下面将简要介绍生物特征识别技术的原理,并分析对比其优劣势。
第一,指纹识别技术是一种通过分析人体固有的指纹特征进行确定个人身份的识别技术,通常采用特征点法,抽出指纹上山状曲线的分歧点或指纹中切断的部分(端点)等特征通过比对来确认用户的身份。与其他生物特征识别技术相比,指纹识别技术研究时间开始比较早,采集便利,采集装置体积较小,成本相对低廉,识别速度较快,容易嵌入到其他系统之中。而且,指纹识别技术采用接触式读取,相对稳定可靠,因此得到广泛地使用。
但是,指纹识别技术也存在许多风险与缺陷。指纹经常处在暴露环境之中,容易被非法分子窃取利用。对于某些如天生无指纹的人或者某些如手工劳动等群体的指纹特征很少,故很难应用指纹识别技术。所以,随着其他生物特征识别技术的发掘,指纹识别技术的近年的市场规模增速有所下降。
第二,人脸识别技术是利用计算机图像处理技术从视频图片中提取人脸的特征点,进行身份对比的一种生物特征识别技术。人脸识别系统包括人脸检测和人脸识别两个环节,其中人脸检测主要是对人脸进行定位和检测,而人脸识别主要是对人脸的特征进行提取,识别以及模拟匹配。
与其他生物特征识别技术相比,人脸识别技术具有非接触性,使用便利性,采集装置简便性,其成本较低,易于推广,而且容易被大众所接受。因此,人脸识别技术的实际应用程度仅次于指纹识别。
虽然人脸识别技术已经得到较大地发展与较广地应用,但是仍然存在许多缺点。人脸识别技术对外界环境的要求高,对光线及角度比较敏感,使用范围局限性。墨镜、口罩、围巾等遮挡物因素及整容化妆等因素也会严重影响其准确度。
第三,虹膜识别技术是目前最安全的生物特征识别技术之一。人的虹膜是在眼角膜和晶状体之间一层环状区域,具有唯一性和稳定性。虹膜识别利用摄像机来捕捉位于虹膜中类似斑点、细丝、冠状、条纹等的细节信息,进行数据处理及身份认证。
与其他生物特征识别技术相比,虹膜识别技术具有拒识和误识方面具有优异性,且其不需要物理接触。
但虹膜识别技术获取设备较为庞大,很难做到设备尺寸小型化,造价高,难以大范围推广。此外,虹膜识别识别距离有限,需要眼睛贴近设备,便捷性一般。
第四,语音识别技术也称为声纹识别技术,声纹是反应说话人的行为、心理和生理特征声音波形的声音参数。由于每个人的发声器官特征各不相同,因此,可应用于身份认证。
与其他生物特征识别技术相比,语音识别技术具有非接触性,采集设置便利性,成本低廉,研究时间较久,容易被大众所接受。
但语音识别技术容易被模拟和窃取利用,其存在较大的安全隐患,且当人的声音受损时具有较大的错误率,受环境因素的影响也较大。因此,语音识别技术的市场也在较大幅度的减少。
更多细节见文档
1.2 研究目的及意义
根据经信委整理数据,生物识别技术行业应用规模增速在未来仍持续增长。
伴随着生物识别技术的市场份额的提高,指静脉也受益于其独特的优势,其推行度及普及性逐步提升。然而在指静脉识别目前大部分仍是基于传统的人工特征方法。传统的人工特征对图像质量、采集环境及手指姿态变化较为敏感,表征能力有限。传统的
指静脉识别技术在实际部署中,其计算量较大,所需存储容量较大,对硬件性能要求较高,且匹配速度较慢。
近年来,随着深度学习及计算机视觉的发展,在图像处理方面得到较大的改进与提升,得到鲁棒性更好的特征。利用深度学习
强大的学习能力和其他相关学习方法,本文旨在从手指静脉图像中自动学习并获取相关有辨识能力的特征。
针对上述问题,本文旨在研究相关手指静脉图像预处理、特征提取及匹配的方法。
更多细节见文档
1.3 研究现状及难点
关于指静脉识别技术,国外早在上世纪末已经有了深度研究,并在 2004 年研发成功基于静脉特征技术认证的 ATM 机。国外研
究以日本日立公司为最成功的代表,其最先进行手指静脉识别研究并进行产业化。2010 年日立公司基于其研究成果成功开发出多款产品,其中包括取款机和汽车锁。2014 年,全北国立大学采用竞争 Gabor 响应直方图来做指静脉识别。
更多细节见文档