高斯有研究矩阵分解?
你可能会说: 我知道,高斯消元法可以用矩阵乘积的形式来表示,相当于对方程组的系数矩阵 作 分解。
是可以这么说,但这毕竟是后人的观点。本文并不是指 分解,而是想说说由另一个主题引出的矩阵分解。
高斯消元法是为了求解线性方程组而生的,但是,它也可以拿来计算二次型的标准型,即对称矩阵对角化。
关于二次型与标准型的知识,可以阅读下面这篇。
二次型和矩阵合同原来是这么一回事高斯那会儿还没有矩阵的概念,更没有矩阵的运算。但为了让过程简洁清晰,我们还是使用矩阵的语言来描述和证明高斯的二次型标准化方法 (对角化对称矩阵)。本文就是为了将这个过程清晰地展现出来,让大家分分钟就能整明白。对,我们的目标就是: 只花几分钟,知识、方法带回家。
1高斯与二次型
矩阵分解法是随着行列式、线性方程组,尤其是双线性形式和二次型等问题的研究而逐渐显现出来的。
拉格朗日、高斯和雅可比等可以说是做了一些早期工作。
大概是为了计算二次型的极值,拉格朗日在 1759 年提出了所谓的配方法,用现在的话说就是构造以三角矩阵表示的线性变换来实现对二次型的标准化处理。
例如,可以用如下方式来将一个二元二次型转化为标准型,
其中, 为系数矩阵的 阶顺序主子式,以及
好家伙,又发现行列式的身影了。
拉格朗日并没有处理 元一般情况,后来雅可比在 1834 年左右推广了上面方法,有些资料将其称为雅可比公式。
本文主要看高斯的工作,他在 1823 年撰写的手稿中使用他早在 1801 年就使用的消元法来实现将一般二次型转化为标准型的任务(也有一说认为,高斯是在拉格朗日方法的启发下实现最小二乘法,这确实也是一个二次型的极值问题)。

这里我们用高斯的符号来书写。具体而言,可以将函数 (关于 的一个二次型)简化为以下形式:
其中,除数 等是常数,而 等是 等的线性函数。但是,第二个函数 独立于 ;第三个 独立于 和 ;第四个 独立于 和 ,依此类推。最后一个函数 仅取决于最后一个未知数。此外,系数 在 中分别乘以 。
从中我们可以看到高斯这里的方法将二次型 的矩阵分解为乘积 ,其中 是对角矩阵,而 是与 具有相同对角元素的上三角矩阵。
高斯这里的 等函数是向量 对应的元素。
值得注意的是,说它们是矩阵分解,肯定是以后人的眼光来看待这些工作。
2推导
接下来我们用矩阵运算那一套来证明