hadoop 2.2 mysql_任务配置 (Hadoop 2.2.0)

本文详细介绍了在Hadoop2.2.0(AMI3.0.0)中,针对不同实例类型的map和reduce任务JVM内存配置。包括mapreduce.map.java.opts和mapreduce.reduce.java.opts等关键参数,以及它们如何影响内存分配。此外,还提到了JVM的重复使用设置,通过mapred.job.reuse.jvm.num.tasks进行调整,以优化任务隔离和性能。
摘要由CSDN通过智能技术生成

任务 JVM 内存设置 (AMI 3.0.0) Hadoop 2.2.0 使用两个参数配置用于 map 和 reduce 的内存:分别为 mapreduce.map.java.opts 和 mapreduce.reduce.java.opts。它们取代了早期 Hadoop 版本中的单个配置选项:mapreduce.map.java.opts。 下表显示了每实例类型

任务 JVM 内存设置 (AMI 3.0.0)

Hadoop 2.2.0 使用两个参数配置用于 map 和 reduce 的内存:分别为 mapreduce.map.java.opts 和 mapreduce.reduce.java.opts。它们取代了早期 Hadoop 版本中的单个配置选项:mapreduce.map.java.opts。

下表显示了每实例类型的这些设置的默认值。

m1.medium

配置选项

默认值

mapreduce.map.java.opts

-Xmx768m

mapreduce.reduce.java.opts

-Xmx768m

mapreduce.map.memory.mb

1024

mapreduce.reduce.memory.mb

1024

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

2048

yarn.nodemanager.resource.memory-mb

2048

m1.large

配置选项

默认值

mapreduce.map.java.opts

-Xmx864m

mapreduce.reduce.java.opts

-Xmx1536m

mapreduce.map.memory.mb

1024

mapreduce.reduce.memory.mb

2048

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

3072

yarn.nodemanager.resource.memory-mb

5120

m1.xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx512m

mapreduce.reduce.java.opts

-Xmx1536m

mapreduce.map.memory.mb

768

mapreduce.reduce.memory.mb

2048

yarn.scheduler.minimum-allocation-mb

256

yarn.scheduler.maximum-allocation-mb

8 192

yarn.nodemanager.resource.memory-mb

12288

m2.xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

7168

yarn.nodemanager.resource.memory-mb

14336

m2.2xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

8 192

yarn.nodemanager.resource.memory-mb

30720

m3.xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1515m

mapreduce.reduce.java.opts

-Xmx1792m

mapreduce.map.memory.mb

1904

mapreduce.reduce.memory.mb

2150

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

3788

yarn.nodemanager.resource.memory-mb

5273

m3.2xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx2129m

mapreduce.reduce.java.opts

-Xmx2560m

mapreduce.map.memory.mb

2826

mapreduce.reduce.memory.mb

3072

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

5324

yarn.nodemanager.resource.memory-mb

9113

m2.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

8 192

yarn.nodemanager.resource.memory-mb

61440

c1.medium

配置选项

默认值

io.sort.mb

100

mapreduce.map.java.opts

-Xmx288m

mapreduce.reduce.java.opts

-Xmx288m

mapreduce.map.memory.mb

512

mapreduce.reduce.memory.mb

512

yarn.scheduler.minimum-allocation-mb

256

yarn.scheduler.maximum-allocation-mb

512

yarn.nodemanager.resource.memory-mb

1024

c1.xlarge

配置选项

默认值

io.sort.mb

150

mapreduce.map.java.opts

-Xmx864m

mapreduce.reduce.java.opts

-Xmx1536m

mapreduce.map.memory.mb

1024

mapreduce.reduce.memory.mb

2048

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

2048

yarn.nodemanager.resource.memory-mb

5120

c3.large

配置选项

默认值

mapreduce.map.java.opts

-Xmx768m

mapreduce.reduce.java.opts

-Xmx768m

mapreduce.map.memory.mb

921

mapreduce.reduce.memory.mb

921

yarn.scheduler.minimum-allocation-mb

499

yarn.scheduler.maximum-allocation-mb

1920

yarn.nodemanager.resource.memory-mb

1920

c3.xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1177m

mapreduce.reduce.java.opts

-Xmx1356m

mapreduce.map.memory.mb

1413

mapreduce.reduce.memory.mb

1628

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

2944

yarn.nodemanager.resource.memory-mb

3302

c3.2xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1515m

mapreduce.reduce.java.opts

-Xmx1792m

mapreduce.map.memory.mb

1904

mapreduce.reduce.memory.mb

2150

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

3788

yarn.nodemanager.resource.memory-mb

5273

c3.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx2129m

mapreduce.reduce.java.opts

-Xmx2560m

mapreduce.map.memory.mb

2826

mapreduce.reduce.memory.mb

3072

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

5324

yarn.nodemanager.resource.memory-mb

9113

c3.8xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx4669m

mapreduce.reduce.java.opts

-Xmx4915m

mapreduce.map.memory.mb

4669

mapreduce.reduce.memory.mb

4915

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

8396

yarn.nodemanager.resource.memory-mb

16793

cc1.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

5120

yarn.nodemanager.resource.memory-mb

20480

cg1.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

5120

yarn.nodemanager.resource.memory-mb

20480

cc2.8xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

8 192

yarn.nodemanager.resource.memory-mb

56320

cr1.8xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx10895m

mapreduce.reduce.java.opts

-Xmx13516m

mapreduce.map.memory.mb

15974

mapreduce.reduce.memory.mb

16220

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

27238

yarn.nodemanager.resource.memory-mb

63897

g2.2xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx512m

mapreduce.reduce.java.opts

-Xmx1536m

mapreduce.map.memory.mb

768

mapreduce.reduce.memory.mb

2048

yarn.scheduler.minimum-allocation-mb

256

yarn.scheduler.maximum-allocation-mb

8 192

yarn.nodemanager.resource.memory-mb

12288

hi1.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx3379m

mapreduce.reduce.java.opts

-Xmx4121m

mapreduce.map.memory.mb

4700

mapreduce.reduce.memory.mb

4945

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

8448

yarn.nodemanager.resource.memory-mb

16921

hs1.8xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx1280m

mapreduce.reduce.java.opts

-Xmx2304m

mapreduce.map.memory.mb

1536

mapreduce.reduce.memory.mb

2560

yarn.scheduler.minimum-allocation-mb

512

yarn.scheduler.maximum-allocation-mb

8 192

yarn.nodemanager.resource.memory-mb

56320

i2.xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx2150m

mapreduce.reduce.java.opts

-Xmx2585m

mapreduce.map.memory.mb

2856

mapreduce.reduce.memory.mb

3102

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

5376

yarn.nodemanager.resource.memory-mb

9241

i2.2xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx3399m

mapreduce.reduce.java.opts

-Xmx4147m

mapreduce.map.memory.mb

4730

mapreduce.reduce.memory.mb

4976

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

8499

yarn.nodemanager.resource.memory-mb

17049

i2.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx5898m

mapreduce.reduce.java.opts

-Xmx7270m

mapreduce.map.memory.mb

8478

mapreduce.reduce.memory.mb

8724

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

14745

yarn.nodemanager.resource.memory-mb

32665

i2.8xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx10895m

mapreduce.reduce.java.opts

-Xmx13516m

mapreduce.map.memory.mb

15974

mapreduce.reduce.memory.mb

16220

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

27238

yarn.nodemanager.resource.memory-mb

63897

r3.xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx2150m

mapreduce.reduce.java.opts

-Xmx3102m

mapreduce.map.memory.mb

2856

mapreduce.reduce.memory.mb

3102

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

5376

yarn.nodemanager.resource.memory-mb

9241

r3.2xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx3399m

mapreduce.reduce.java.opts

-Xmx4147m

mapreduce.map.memory.mb

4743

mapreduce.reduce.memory.mb

4976

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

8499

yarn.nodemanager.resource.memory-mb

17049

r3.4xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx5898m

mapreduce.reduce.java.opts

-Xmx7270m

mapreduce.map.memory.mb

8478

mapreduce.reduce.memory.mb

8724

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

14745

yarn.nodemanager.resource.memory-mb

32665

r3.8xlarge

配置选项

默认值

mapreduce.map.java.opts

-Xmx10895m

mapreduce.reduce.java.opts

-Xmx13516m

mapreduce.map.memory.mb

15974

mapreduce.reduce.memory.mb

16220

yarn.scheduler.minimum-allocation-mb

532

yarn.scheduler.maximum-allocation-mb

27238

yarn.nodemanager.resource.memory-mb

69897

您可以在执行每项任务时启动新 JVM,实现更好的任务隔离;也可以在各项任务之间共享 JVM,降低框架开销。如果您处理的是许多小文件,合理的做法是多次重复使用 JVM,以摊销启动成本。然而,如果每项任务耗时较长或处理的数据量较大,您可以选择不重复使用 JVM,以确保释放出所有内存供后续任务使用。

使用 mapred.job.reuse.jvm.num.tasks 选项配置 JVM 重复使用设置。

使用引导操作修改 JVM

在安装了 Amazon EMR CLI 的目录下,从命令行运行以下命令。有关更多信息,请参见 Amazon

EMR 的命令行接口参考。

Linux、UNIX 和 Mac OS X 用户:

./elastic-mapreduce --create --alive --name "JVM infinite reuse" \

--bootstrap-action s3://elasticmapreduce/bootstrap-actions/configure-hadoop \

--bootstrap-name "Configuring infinite JVM reuse" \

--args "-m,mapred.job.reuse.jvm.num.tasks=-1"

Windows 用户:

ruby elastic-mapreduce --create --alive --name "JVM infinite reuse" --bootstrap-action s3://elasticmapreduce/bootstrap-actions/configure-hadoop --bootstrap-name "Configuring infinite JVM reuse" --args "-m,mapred.job.reuse.jvm.num.tasks=-1"

Note

Amazon EMR 已将 mapred.job.reuse.jvm.num.tasks 的值设置为 20,但您可以通过引导操作覆盖此值。值 -1 表示在单一作业中重复使用的次数不受限制,1 表示不能重复使用任务。

f68f2add0b68e4f9810432fce46917b7.png

本文原创发布php中文网,转载请注明出处,感谢您的尊重!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值