单纯形法只有两个约束条件_[管理学]管理运筹学单纯形法.ppt

[管理学]管理运筹学单纯形法

商学院 王中昭 此法是求解线性规划问题的一种有效方法 本章的学习内容: §1、单纯形法的基本思路和原理 §2、单纯形法的表格形式 §3、求目标函数值最小的问题的单纯形表解法 4、几种特殊情况 图解法只能解决仅含有两个决策变量的线性规划的问题,对多于两个决策变量的线性规划问题,图 解法就显得无能为力了。在这一章里将介绍由美国数学家丹捷格(G·B· Dantgig) 1947提出的,得到最广泛应用的线性规划的代数算法——单纯形法,这恐怕是在运筹学发展史上最辉煌的一笔,此算法是对运筹学算法的一次革命。在第三章所介绍的线性规划问题的计算机解法就是基于单纯形法原理来编程的。它可解决多个变量线性规划问题。在后来研究上还发明其它求解线性规划的方法,如前苏联科学家发明的内点法、印度科学家发明的K算法等。 单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止 。 在这里,可行域的顶点已不再像图解法中那样直接可见了。在单纯形法中的可行域的顶点叫做基本可行解,第一个找到的可行域的顶点叫做初始基本可行解。下面通过第二章例1来介绍单纯形法。 在第二章的例1中我们得到以下数学模型: 目标函数: max Z=50X1+100X2 约束条件: X1+X2≤300, 2 X1+X2≤400, X2≤250, X1≥0, X2≥0. 加上松弛变量后得到如下标准型: 目标函数:max Z=50X1+100X2 约束条件: X1+X2+S1=300, 2X1+X2+S2=400, X2+S3=250, X1,X2,S1,S2,S3≥0 其中pj为系数矩阵A中第j列的向量。由于在A中存在一个不为零的三阶子式,可知A的秩为3。因为A的秩m小于此方程组的变量的个数n,从线性代数的知识可知其有无数多组解。为了找到一个初始基本可行解,先介绍一些线性规划的基本概念。 基:已知A是约束条件的m×n系数矩阵,其秩为m。若B是A中m×m阶非奇异子矩阵( 即可逆矩阵,|B|≠0),则称B是线性规划问题中的一个基。也即任一m阶的可逆矩阵都可作为基。 基向量:基B中的每一列即称为一个基向量。 基B中共有m个基向量,在此例中对于基B来说,三个列向量都是基向量,而且B只有这三个基向量。 非基向量:在A中除了基B之外的每一列称之为基B的非基向量。 基变量:与基向量pi相应的变量Xi叫基变量,基变量有m个,在此例题中X1,X2,S1都是B1的基变量,而S1,S2,S3是B2的基变量。 非基变量:与非基向量pj相应的变量Xj叫非基变量,非基变量有n-m个,在此例题中,S2,S3是B1的非基变量。而X1,X2是B2的非基变量。 基本解:由线性代数知识得:如果在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零。再求解这个方程组就可得到唯一解了,这个解称为线性规划的基本解。 可行解: 满足: 由于在这个基本解中S1= -100,S3=- 150,不满足该线性规划S1≥0,S3≥0的约束条件,显然不是问题的可行解。 一个基本解可以是可行解,也可以不是可行解。它们之间主要区别在于其所有变量的解是否满足非负条件。把满足非负条件的一个基本解叫做基本可行解,并把这样的基叫做可行基。 可行解、基本解、基本可行解和最优解的关系: 关于基本解,可行解和基本可行解的概念: 注意首先要把模型变成标准型再判断。 可行解: 满足约束条件(包括非负性)的解称为可行解,但不一定含有基。 基本解: 找出一个基,令非基变量为0,再求出解,此解不一定满足非负性。 基本可行解: 既满足非负性又满足基本解的解称为基本可行解。 由于所有变量的解都大于等于零,可知此基本解是基本可行解。所以 判断一个基是否是可行基,只有在求出其基本解以后,当其基本解所有变量的解都大于等于零,才能断定这个解是基本可行解,这个基是可行基。那么能否在求解之前就找到一个可行基呢? 由于在线性规划的标准型中要求bj都大于等于零,如果找

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值