昇腾910B国产化大模型适配指南

昇腾910B国产化大模型适配指南



第一章:昇腾910B适配PyTorch环境的虚拟环境安装

一、版本要求

PyTorch版本要求:2.1.0版本,能够原生适配NPU环境
PyTorch-NPU版本要求:2.1.0版本,能够与PyTorch版本兼容
Python版本要求:Python3.8.3版本
910B服务器OS要求:aarch64-linux
910B服务器CANN要求:7.0.RC1.2
服务器环境查询方式:

查看环境变量:printenv
cd /usr/local/Ascend/ascend-toolkit/latest 查看服务器环境,可以发现是aarch64-linux
cat toolkit/version.info 查看CANN版本,可以发现版本为7.0.RC1.2,支持pytorch2.1.0

二、虚拟环境安装

1. 在服务器上安装虚拟环境:

python -m venv npu_test(npu_test是虚拟环境的名字)

2. 安装NPU依赖的环境:
安装方式请参考:Ascend Extension for PyTorch
参考地址:https://gitee.com/ascend/pytorch
安装pytorch以及pytorch-npu:

pip3 install torch==2.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install torch-npu==2.1.0 -i https://mirrors.aliyun.com/pypi/simple/

3.初始化CANN环境变量(服务器已经安装固件和驱动,以及CANN环境)

source /usr/local/Ascend/ascend-toolkit/set_env.sh

4.Python环境检查torch_npu是否可用,进入python3,输入以下代码:

import torch
import torch_npu

x = torch.randn(2, 2).npu()
y = torch.randn(2, 2)
### 部署 DeepSeek 的环境准备 为了在升腾910B处理器上成功部署DeepSeek,需先确认硬件配置满足最低需求并完成必要的软件包安装。对于特定于Ascend 910B平台的支持,建议参照官方文档获取最新的兼容性和优化指南[^1]。 ```bash # 安装依赖库和工具链 sudo apt-get update && sudo apt-get install -y \ build-essential \ cmake \ git \ wget \ python3-dev \ python3-pip ``` ### 获取 DeepSeek 并构建运行环境 通过Git或其他方式下载目标版本的DeepSeek源码或预编译二进制文件至本地机器。针对Ascend系列芯片组进行了特别适配的模型可能存在于专用分支或是标记为`ascend-support`类似的标签下。 ```bash git clone https://github.com/deepseek-labs/DeepSeek.git cd DeepSeek git checkout tags/v3.0.0-ascend # 假设v3.0.0是支持Ascend架构的一个稳定版tag pip3 install --upgrade pip setuptools wheel pip3 install . ``` ### 设置 Ascend SDK 和驱动程序 确保已正确安装来自华为提供的Ascend计算平台SDK以及相应的驱动程序。这一步骤通常涉及设置环境变量来指向Ascend的相关路径,并验证Geekbench等基准测试能否正常工作以证明GPU加速功能可用性。 ```bash export ASCEND_HOME=/usr/local/Ascend source $ASCEND_HOME/npu-smi/init_env.sh npu-smi info ``` ### 运行首个推理实例 当一切就绪之后,可以尝试执行简单的命令来加载预先训练好的模型并对单张图片进行分类预测作为初步检验。这里假设存在一个名为`classify_image.py`脚本用于此目的。 ```python from deepseek import load_model, preprocess_image, predict model = load_model('resnet50_ascend') image_path = 'example.jpg' input_tensor = preprocess_image(image_path) predictions = predict(model, input_tensor) print(predictions) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值