a星算法的优缺点_A星寻路算法

这篇博客详细介绍了A星(A*)寻路算法的工作原理和应用,通过一个经典案例展示了如何计算最短路径。文章解释了算法中的关键概念,如父节点、已使用步数、无障碍距离和期望完成步数,并提供了详细的步骤解析。最后,博主给出了实现A*算法的思路。
摘要由CSDN通过智能技术生成

本节主要讲述A星寻路算法,下面通过一个经典案例开始。

案例:在下面的图片中,小人想要找到五角星,主要有2条路径,一条是蓝色部分,从上面开始寻找,此时总步数为9步;另外一种就是从下面开始寻找,此时总步数为7步,我们通过步数得出,最短路径的步数为7步,怎么通过代码实现搜索步数呢,下面我们开始。

d7c1951b7ab13ab38b8118f1b253dd07.png

A星寻路法主要是为每个节点定义一下几个内容,通过公式计算得出最短路径的步数以及打印最短路径。

1、父节点:保存每个节点对应的父节点,在我们找到目标节点时,可以通过父节点寻找每个节点的位置,从而打印出节点路径。

2、已使用步数:从开始节点到当前节点已使用的步数,每个节点一步

3、无障碍距离 :当前节点到目标节点无视障碍的距离,等于行坐标距离+列坐标距离

4、期望完成步数:已使用步数+无障碍的步数,搜索最短步数时的依据。

5、节点的行、列坐标,标识当前节点所在的位置。

为了方便看图,每个节点左上角表示期望完成步数,左下角表示已使用步数,右下角表示无障碍距离。

5afc1309da9d409183478d8fc1d88fa8.png
class Node{
    
  /** 行坐标 **/
  int x;
  /** 列坐标 **/
  int y;
  /** 已使用步数 :从开始节点到当前节点已使用的步数**/
  int usedSteps;
  /** 无障碍距离  :当前节点到目标节点无视障碍的距离**/
  int distance;
  /** 期望步数  = 已使用步数+无障碍距离**/
  int expectedSteps;
  /** 父节点:打印路径时需要 **/
  Node parent;
}

下面开始对案例的详细步骤解答:

首先我们定义一个迷宫:

  /** 迷宫 1表示障碍物 **/
  public static int[][] MAZE = {
     
      {
     0, 0, 0, 1, 0 }, 
      {
     0, 1, 0, 1, 0 }, 
      {
     0, 1, 0, 0, 0 }, 
      {
     0, 0, 0, 1, 0 } 
      };

我们需要建立2个list,用以保存那些节点已经被访问过,那些节点准备访问。

  /** 待访问的节点 **/
  ArrayList<Node> readyList = new ArrayList<>();
  /** 已访问的节点 **/
  ArrayList<Node> visitedList = new ArrayList<>();

我们计算开始节点周围节点已使用步数、无障碍距离、期望完成步数,并将结果放到待访问节点列表中。由于每个节点都有上下左右4个方向,为了避免写4次,我们用一个数组表示方向。

  /** 定义上下左右方向 **/
  static int[][] stepArray = {
     {
     0, 1 }, {
     0, -1 }, {
     1, 0 }, {
     -1, 0 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值