gather torch_浅谈Pytorch中的torch.gather函数的含义

pytorch中的gather函数

pytorch比tensorflow更加编程友好,所以准备用pytorch试着做最近要做的一些实验。

立个flag开始学习pytorch,新开一个分类整理学习pytorch中的一些踩到的泥坑。

今天刚开始接触,读了一下documentation,写一个一开始每太搞懂的函数gather

b = torch.Tensor([[1,2,3],[4,5,6]])

print b

index_1 = torch.LongTensor([[0,1],[2,0]])

index_2 = torch.LongTensor([[0,1,1],[0,0,0]])

print torch.gather(b, dim=1, index=index_1)

print torch.gather(b, dim=0, index=index_2)

观察它的输出结果:

1 2 3

4 5 6

[torch.FloatTensor of size 2x3]

1 2

6 4

[torch.FloatTensor of size 2x2]

1 5 6

1 2 3

[torch.FloatTensor of size 2x3]

这里是官方文档的解释

torch.gather(input, dim, index, out=None) → Tensor

Gathers values along an axis specified by dim.

For a 3-D tensor the output is specified by:

out[i][j][k] = input[index[i][j][k]][j][k] # dim=0

out[i][j][k] = input[i][index[i][j][k]][k] # dim=1

out[i][j][k] = input[i][j][index[i][j][k]] # dim=2

Parameters:

input (Tensor) ? The source tensor

dim (int) ? The axis along which to index

index (LongTensor) ? The indices of elements to gather

out (Tensor, optional) ? Destination tensor

Example:

>>> t = torch.Tensor([[1,2],[3,4]])

>>> torch.gather(t, 1, torch.LongTensor([[0,0],[1,0]]))

1 1

4 3

[torch.FloatTensor of size 2x2]

可以看出,gather的作用是这样的,index实际上是索引,具体是行还是列的索引要看前面dim 的指定,比如对于我们的栗子,【1,2,3;4,5,6,】,指定dim=1,也就是横向,那么索引就是列号。index的大小就是输出的大小,所以比如index是【1,0;0,0】,那么看index第一行,1列指的是2, 0列指的是1,同理,第二行为4,4 。这样就输入为【2,1;4,4】,参考这样的解释看上面的输出结果,即可理解gather的含义。

gather在one-hot为输出的多分类问题中,可以把最大值坐标作为index传进去,然后提取到每一行的正确预测结果,这也是gather可能的一个作用。

以上这篇浅谈Pytorch中的torch.gather函数的含义就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值