用计算机绘制函数图象教案,信息技术应用 用计算机画函数图象教学设计(教案)...

庞丹

地区: 四川省 - 广元市 - 昭化区

学校:广元民盟烛光初级中学 共1课时

信息技术应用  用计算机画函数图象">信息技术应用  用计算机… 初中数学       人教2011课标版 1学情分析

1:能结合图像,探究出一次函数的主要性质。

2:培养学生观察、比较、抽象、概括的能力,向学生渗透数形结合的思想。

3:通过学生在学习过程中获得得成功体验,增强学习数学的自信心。

2重点难点

重点:一次函数的性质。

难点;由一次函数的图像探究出一次函数的性质。 3教学过程 3.1第二学时教学活动 活动1【导入】提出问题  创设情境>

前面我们学习了一次函数的概念及图像,知道一次函数y=kx+b(k≠‍0)的图像是一条直线,我们称之为直线y=kx+b,与x轴交点坐标为(-bk, 0)与y轴交点坐标为(0,b),它的图像既可由亮点发得到,也可将直线y=kx平移得到。本节我们研究一次函数的性质。 活动2【讲授】合作交流  得出结论

1、观察图像,回答下列问题。

(1) 函数y=x-1,y=x,y=x+2与y=-3x-1,y=-3x,y=-3x+1中的x的系数有什么关系?

(2)它们的图像又有怎样的位置关系?说明什么问题?

( 3)   函数y=x-1与y=x+2的图像有什么不同点,y=x-1与y=-3x-1的图像有什么相同点,说明什么?

2、 归纳一次函数的性质

(1)k决定图像的走向及倾斜程度,b决定图像与y轴交点。两个一次函数b一样,k不一样时,她们与y轴交于同一点(0,b),当k一样,b不一样时,两直线平行。k和b共同决定了图像的位置。

(2)师生共同完成y=kx+b(k ≠‍  0)性质的表格 活动3【练习】应用迁移   巩固提高

1、尝试练习

(1)   若一次函数y=kx+b的函数值y随x的增大而减小,且图像与y轴的正半轴相交,那么对k和b的符号判断正确的是(     )

A   k>0  b>0       B   k>0  b<0        C    k<0  b>0          D    k<0  b<0

(2)  练习册作业当堂检测2、3题

。2、学习例题

例1     已知一次函数y=(m-3)x+2m-1的图像经过第一、二、四象限,且m为整数,求m的值。

点悟:解决这类题始终要抓住直线y=kx+b(k ≠ 0)在平面直角坐标系中的大致位置,根据其性质从而确定k、b的符号。

例2  一次函数的图像过点(-1,0)且函数值随着自变量的增大而增大,写出一个符合条件的一次函数解析式(            )。

3、巩固练习

(1)直线y=kx+b与y=-3x平行,且|b|=2.此函数的解析式为(       )

(2)函数y=kx+|K| (k  ≠    0)在直角坐标系中的图像可能是(          )

4 、挑战练习 函数y=kx+b( k≠0    b≠ 0 )与函数y=bx+k在同一坐标系中的图像可能为(              )。 活动4【作业】总结反思   拓展升华

总结:本节课的数学知识是一次函数的性质,数学方法是数形结合。

反思:判断直线y=kx+b(  k≠0 )在坐标系中的位置,首先由b看它与y轴的交点情况,再由k确定它是上升还是下降。

作业:练习册课后作业1~7题。

思考:函数y=mx+n与函数y=mnx( mn≠0)在同一直角坐标系中的图像可能是(         )。

信息技术应用  用计算机画函数图象 课时设计 课堂实录

信息技术应用  用计算机画函数图象 1第二学时 教学活动 活动1【导入】提出问题  创设情境>

前面我们学习了一次函数的概念及图像,知道一次函数y=kx+b(k≠‍0)的图像是一条直线,我们称之为直线y=kx+b,与x轴交点坐标为(-bk, 0)与y轴交点坐标为(0,b),它的图像既可由亮点发得到,也可将直线y=kx平移得到。本节我们研究一次函数的性质。 活动2【讲授】合作交流  得出结论

1、观察图像,回答下列问题。

(1) 函数y=x-1,y=x,y=x+2与y=-3x-1,y=-3x,y=-3x+1中的x的系数有什么关系?

(2)它们的图像又有怎样的位置关系?说明什么问题?

( 3)   函数y=x-1与y=x+2的图像有什么不同点,y=x-1与y=-3x-1的图像有什么相同点,说明什么?

2、 归纳一次函数的性质

(1)k决定图像的走向及倾斜程度,b决定图像与y轴交点。两个一次函数b一样,k不一样时,她们与y轴交于同一点(0,b),当k一样,b不一样时,两直线平行。k和b共同决定了图像的位置。

(2)师生共同完成y=kx+b(k ≠‍  0)性质的表格 活动3【练习】应用迁移   巩固提高

1、尝试练习

(1)   若一次函数y=kx+b的函数值y随x的增大而减小,且图像与y轴的正半轴相交,那么对k和b的符号判断正确的是(     )

A   k>0  b>0       B   k>0  b<0        C    k<0  b>0          D    k<0  b<0

(2)  练习册作业当堂检测2、3题

。2、学习例题

例1     已知一次函数y=(m-3)x+2m-1的图像经过第一、二、四象限,且m为整数,求m的值。

点悟:解决这类题始终要抓住直线y=kx+b(k ≠ 0)在平面直角坐标系中的大致位置,根据其性质从而确定k、b的符号。

例2  一次函数的图像过点(-1,0)且函数值随着自变量的增大而增大,写出一个符合条件的一次函数解析式(            )。

3、巩固练习

(1)直线y=kx+b与y=-3x平行,且|b|=2.此函数的解析式为(       )

(2)函数y=kx+|K| (k  ≠    0)在直角坐标系中的图像可能是(          )

4 、挑战练习 函数y=kx+b( k≠0    b≠ 0 )与函数y=bx+k在同一坐标系中的图像可能为(              )。 活动4【作业】总结反思   拓展升华

总结:本节课的数学知识是一次函数的性质,数学方法是数形结合。

反思:判断直线y=kx+b(  k≠0 )在坐标系中的位置,首先由b看它与y轴的交点情况,再由k确定它是上升还是下降。

作业:练习册课后作业1~7题。

思考:函数y=mx+n与函数y=mnx( mn≠0)在同一直角坐标系中的图像可能是(         )。

Tags:信息,技术应用,计算机,函数,图象

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值