郑丽华
地区: 吉林省 - 延边自治州 - 珲春市
学校:珲春市板石镇中学校 共1课时
信息技术应用 用计算机画函数图象">信息技术应用 用计算机… 初中数学 人教2011课标版 1教学目标
知识与技能:使学生理解正比例函数图象的概念,理解正比例函数图像是一条直线;掌握正比例函数的性质;学会画正比例函数的图象及正比例函数的性质应用
过程与方法:经历画正比例函数图像的过程,体会由“数”到“形”的数学思想,通过归纳正比例函数的性质,体会由“形”到“数”的数学思想。
情感、态度与价值观:结合描点作图,培养学生认真、仔细、严谨的学习态度和学习习惯。 2学情分析
通过前面的学习,掌握了函数的不同表示方法,知道各自优缺点,能够按具体情况选用适当方法;同时学生已经了解了正比例函数的概念,也掌握了画函数图像的一般步骤。对学生来说函数表示方法的正确应用比较困难;对于本节课的内容,学生认知障碍点为:正比例函数图象的性质特点. 3重点难点
重点:正比例函数的图象和性质及应用
难点:在正比例函数的图象的生成中,理解正比例函数图象是一条直线 4教学过程 4.1第一学时教学活动 活动1【导入】创设情境
正比例函数解析式怎么表示?
描点法画函数图像一般步骤是什么?
师生活动:在学生回答问题1和问题2时,教师要关注学生学习本节课的基础是否扎实,若有问题及时弥补。 活动2【活动】画函数图像
既然知道正比例函数的概念及画图像的步骤,那么师生共同画正比例函数y=x的图像。设计意图:调动学生的积极性,同时,体会画图的成就感。
师:先看一例,正比例函数y=x,其中x,y是变量,当x取不同的数值时,相对应的y的值会怎样呢?
生:y有唯一确定的值与它对应(较难,教师可以启发回答)
师:我们不妨取一些较简单的x的值,如:x=1,2,-1,-2,0等,相对应的y的值会等于多少?由教师演示一张表格,学生回答。这些相对应的x和y的值与平面直角坐标系上的点有怎样的联系呢?演示一坐标系,用表里各组对应值作为点的坐标(x,y),描出各个点,猜想如果取足够多的点,那么这些点用光滑的线连接起来后是个什么图形呢?
生:是直线 活动3【活动】探索新知
操作探究:在同一直角坐标系中画出函数y=2x与 的图像,学生在坐标纸上画,结合学生的画图实践,让学生直观感受正比例函数图像是一条经过原点的直线,然后教师用PPT演示画图过程。之后学生在独立画出y=-1.5x和y=-2x的图像,发现所画的图像仍然是一条过原点的直线,通过以上图像体会正比例系数k取不同值时图像的特点。最后,思考画正比例函数图像的简便方法是什么。(如果学生有困难,可提示“两点确定一条直线”引导他们。如果他们能说出找两个点,那追问找哪两个点比较容易) 活动4【活动】总结性质
在画函数图象时,使函数图象位置发生变化的量是x、y、k中的哪个量?
这个量是如何影响正比例函数函数值的变化?又是如何影响正比例函数图像的呢?
正比例函数图象经过一、三象限时,你能获得哪些信息?经过二、四象限呢?
正比例函数一定过哪个点?
(学生在回答上述问题时,教师注意学生描述的规范性,及时给予点评和纠正) 活动5【测试】巩固新知
画出正比例函数 和y=-3x的图像。
(教师巡视,看看学生是选择哪种方法进行画图的,画的是否规范,并解决他们的问题)
若正比例函数y=(k-3)x满足下列条件,求出k的取值范围。
y随x的增大而增大;
图像经过一、三象限;
图像经过二、四象限。
师生活动:教师要关注学生对语言描述、数学符号和图像信息之间的转化能力,最好请学生解释其中的原因,教师加以点评。
信息技术应用 用计算机画函数图象 课时设计 课堂实录
信息技术应用 用计算机画函数图象 1第一学时 教学活动 活动1【导入】创设情境
正比例函数解析式怎么表示?
描点法画函数图像一般步骤是什么?
师生活动:在学生回答问题1和问题2时,教师要关注学生学习本节课的基础是否扎实,若有问题及时弥补。 活动2【活动】画函数图像
既然知道正比例函数的概念及画图像的步骤,那么师生共同画正比例函数y=x的图像。设计意图:调动学生的积极性,同时,体会画图的成就感。
师:先看一例,正比例函数y=x,其中x,y是变量,当x取不同的数值时,相对应的y的值会怎样呢?
生:y有唯一确定的值与它对应(较难,教师可以启发回答)
师:我们不妨取一些较简单的x的值,如:x=1,2,-1,-2,0等,相对应的y的值会等于多少?由教师演示一张表格,学生回答。这些相对应的x和y的值与平面直角坐标系上的点有怎样的联系呢?演示一坐标系,用表里各组对应值作为点的坐标(x,y),描出各个点,猜想如果取足够多的点,那么这些点用光滑的线连接起来后是个什么图形呢?
生:是直线 活动3【活动】探索新知
操作探究:在同一直角坐标系中画出函数y=2x与 的图像,学生在坐标纸上画,结合学生的画图实践,让学生直观感受正比例函数图像是一条经过原点的直线,然后教师用PPT演示画图过程。之后学生在独立画出y=-1.5x和y=-2x的图像,发现所画的图像仍然是一条过原点的直线,通过以上图像体会正比例系数k取不同值时图像的特点。最后,思考画正比例函数图像的简便方法是什么。(如果学生有困难,可提示“两点确定一条直线”引导他们。如果他们能说出找两个点,那追问找哪两个点比较容易) 活动4【活动】总结性质
在画函数图象时,使函数图象位置发生变化的量是x、y、k中的哪个量?
这个量是如何影响正比例函数函数值的变化?又是如何影响正比例函数图像的呢?
正比例函数图象经过一、三象限时,你能获得哪些信息?经过二、四象限呢?
正比例函数一定过哪个点?
(学生在回答上述问题时,教师注意学生描述的规范性,及时给予点评和纠正) 活动5【测试】巩固新知
画出正比例函数 和y=-3x的图像。
(教师巡视,看看学生是选择哪种方法进行画图的,画的是否规范,并解决他们的问题)
若正比例函数y=(k-3)x满足下列条件,求出k的取值范围。
y随x的增大而增大;
图像经过一、三象限;
图像经过二、四象限。
师生活动:教师要关注学生对语言描述、数学符号和图像信息之间的转化能力,最好请学生解释其中的原因,教师加以点评。
Tags:信息,技术应用,计算机,函数,图象