c++ 修改向量某位置的值_平面向量笔记

这是高考完的第一篇文章,以后打算发一些自己高中的笔记和自我学习研究成果,这次先来点平面向量(高中笔记)

一 . 等值线(和,差,商,积)

二 . 三角形四心与奔驰定理

三 . 极化恒等式及其变形推论

首先来说说等值线(和,差,商,积) :

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D

说明:平面向量基本定理:如果

equation?tex=%5Cvec%7B%5Calpha%7D%EF%BC%8C%5Cvec%7B%5Cbeta%7D 是同一平面内的两个不共线的向量 ,那么对于这个平面内的任一 向量
equation?tex=%5Cvec%7Ba%7D ,有且仅有 一对实数
equation?tex=%5Clambda%EF%BC%8C%5Cmu+ ,使
equation?tex=%5Cvec%7Ba%7D%3D%5Clambda%5Cvec%7B%5Calpha%7D%2Bu%5Cvec%7B%5Cbeta%7D ,我们称
equation?tex=%5Clambda%EF%BC%8C%5Cmu 为平面向量基本定理系数 .

1.等和线:我们都知道,在平面向量中,如果有

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D的话, 若P在直线AB上,则有
equation?tex=%5Clambda%2B%5Cmu%3D1 ,本来这么简单就不想证明了,但考虑到其中有一个知识点,就证明一下吧

40776c1c470051fca2caa66171dbcbd1.png

证明:不妨设

equation?tex=%5Cvec%7BAP%7D%3Dt%5Cvec%7BPB+%7D+

equation?tex=%28%5Cvec%7BOP%7D-%5Cvec%7BOA%7D%29%3Dt%28%5Cvec%7BOB%7D-%5Cvec%7BOP%7D%29++
, 即
equation?tex=%5Cvec%7BOP%7D%3D%5Cfrac%7B1%7D%7B1%2Bt%7D%5Cvec%7BOA%7D%2B%5Cfrac%7Bt%7D%7B1%2Bt%7D%5Cvec%7BOB+%7D

equation?tex=%5Clambda%3D%5Cfrac%7B1%7D%7B1%2Bt%7D%EF%BC%8C%5Cmu%3D%5Cfrac%7Bt%7D%7B1%2Bt%7D
equation?tex=%5Clambda%2B%5Cmu%3D1

你可能会注意到:

equation?tex=%5Cfrac%7B%5Clambda%7D%7B%5Cmu%7D%3D%5Cfrac%7B1%7D%7Bt%7D ,刚刚好就是交叉系数

cf8b289adb9380c838f2bb139e17442d.png

具体不多讲,自己悟吧,接着等和线

3653e60c0371f846d90f341ee1f9bf1a.png

刚才P点是在直线AB上的,那如果P点不在直线AB上呢?比如下图

equation?tex=+
equation?tex=OP%5Ccap+AB%3DP%27 ,
不妨设
equation?tex=%5Cvec%7BOA%27%7D%3Dk%5Cvec%7BOA%7D+
equation?tex=k%5Cin+R ),
equation?tex=%5Cvec%7BOP%27%7D%3Dx+%5Cvec%7BOA%7D%2By+%5Cvec%7BOB%7D

那么 x+y=1

但是现在

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D , 求
equation?tex=%5Clambda%2B%5Cmu ,怎么办呢,跟x+y和k又有什么关系呢

下面用代数的方法探讨一下

a82ce6a822d083e47fdd409100854ac0.png
点P’没标出

如图,

equation?tex=%5Cfrac%7BOP%7D%7BOP%27%7D%3D%5Cfrac%7BOB%27%7D%7BOB%7D%3D%5Cfrac%7BOA%27%7D%7BOA%7D%3Dk+

equation?tex=%5Cvec+%7BOP%7D%3D%5Cvec+%7BOA%27%7D%2B%5Cvec+%7BA%27P%7D%5C%5C%3D%5Cvec+%7BOA%27%7D%2Bt%5Cvec+%7BA%27B%27%7D%5C%5C%3D%5Cvec+%7BOA%27%7D%2Bt%28OB%27-OA%27%29%5C%5C%3D%281-t%29k%5Cvec+%7BOA%7D%2Btk%5Cvec+%7BOB%7D++

即:

equation?tex=%5Clambda%2B%5Cmu%3Dk , 显然k只与直线AB与直线L的相对位置有关,而与P点在L上的位置无关,

所以,对于平行与直线AB的直线上的任意一点P,以

equation?tex=%5Cvec%7BOA%7D%2C%5Cvec%7BOB%7D
为基底的向量
equation?tex=%5Cvec%7BOP+%7D
的平面向量基本定理的系数和为定值.

反之,对于任意两个向量

equation?tex=%5Cvec%7BON%7D%2C%5Cvec%7BOM%7D , 若有

equation?tex=%5Cvec%7BON%7D%3D%5Clambda_%7B1%7D%5Cvec%7BOA%7D%2B%5Cmu_%7B1%7D%5Cvec%7BOB%7D%5C%5C%5Cvec%7BOM%7D%3D%5Clambda_%7B2%7D%5Cvec%7BOA%7D%2B%5Cmu_%7B2%7D%5Cvec%7BOB%7D

equation?tex=%5Clambda_1%2B%5Cmu_1%3D%5Clambda_2%2B%5Cmu_2 ,移项得:
equation?tex=%5Clambda_1-%5Clambda_2%3D%5Cmu_1-%5Cmu_2

equation?tex=%5Cvec%7BMN%7D%3D%5Cvec%7BON%7D-%5Cvec%7BOM%7D%3D%28%5Clambda_1-%5Clambda_2%29%5Cvec%7BOA%7D%2B%28%5Cmu_1-%5Cmu_2%29%5Cvec%7BOB%7D%3D%28%5Clambda_1-%5Clambda_2%29%5Cvec%7BAB%7D

从而:

equation?tex=%5Cvec%7BMN%7D%E2%88%A5%5Cvec%7BAB%7D

于是有:平面内一组基底

equation?tex=%5Cvec%7BOA%7D%2C%5Cvec%7BOB%7D ,及任一向量
equation?tex=%5Cvec%7BOP%7D
equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D

点P在直线AB上或在平行于AB 的直线上 ,则

equation?tex=%5Clambda%2B%5Cmu%3Dk (定 值 ),反之也成立 .

我们 把 直线 AB 以及与 AB平行的直线叫平面向量基本定理系数的等和线

代数法比较严谨,也略显麻烦,下面这个方法比较容易理解

e94dbbe1419ccd581d7cef6bf7a8ae39.png

如图,

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda%5Cvec%7BOA%7D%2B%5Cmu%5Cvec%7BOB%7D%3Dk%5Cvec%7BOP%E2%80%99%7D , ∵ A,B,P'三点共线,∴x+y=k

等差线:简单的来说就是平行三角形ABC的AB边中线的直线,若P点在该直线上,那么

equation?tex=%5Clambda-%5Cmu%3Dk+(定值)

e80714dfb5c6a01377537a70d1dc8f78.png

平面内一组基底

equation?tex=%5Cvec%7BOA%7D%2C%5Cvec%7BOB%7D ,C为线段 AB的中点,
equation?tex=%5Cvec%7BOC%7D%3D%5Cfrac%7B1%7D%7B2%7D%28%5Cvec%7BOA%7D%2B%5Cvec%7BOB%7D%29 ,设P'为直线OC上任意一点,则
equation?tex=%5Cvec%7BOP%27%7D%3Dt%5Cvec%7BOC%7D%3D%5Cfrac%7Bt%7D%7B2%7D%5Cvec%7BOA%7D%2B%5Cfrac%7Bt%7D%7B2%7D%5Cvec%7BOB%7D ,

此时

equation?tex=%5Clambda%3D%5Cmu%3D%5Cfrac%7Bt%7D%7B2%7D
equation?tex=%5Clambda-%5Cmu%3D0

不懂?看看下面这图

ec6f1bc1ade04681be9e365bca194b3e.png

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D%3D%5Clambda+++%5Cvec%7BOA%7D%2B%EF%BC%88-%5Cmu%EF%BC%89%5Cvec%7BOB%27%7D,
equation?tex=%5Clambda%2B%28-%5Cmu%29%3D0

这下就简单易懂了,繁杂的代数就不写了,参考上面

等商线:若点P在过O点的直线上(非O点),以

equation?tex=%5Cvec%7BOA%7D%2C%5Cvec%7BOB%7D
为基底的向量
equation?tex=%5Cvec%7BOP+%7D
的平面向量基本定理的系数和为定值.即
equation?tex=%5Cfrac%7B%5Cmu%7D%7B%5Clambda%7D%3Dk (定值)

b9a0213c06af380aac6d5086c6a9ba33.png

下面证明充分性(必要性就不证了,懒):

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D
equation?tex=%5Cvec%7BOP%E2%80%99%7D%3Dt%5Cvec%7BOP%7D ,且P,P'都在直线L上

equation?tex=%5Cvec%7BOP%27%7D%3Dt%5Cvec%7BOP%7D%3Dt%5Clambda+%5Cvec%7BOA%7D%2Bt%5Cmu+%5Cvec%7BOB%7D

equation?tex=%5Cfrac%7Bt%5Cmu%7D%7Bt%5Clambda%7D%3D%5Cfrac%7B%5Cmu%7D%7B%5Clambda%7D%3Dk

若以O为原点,OA,OB,分别为x轴和y轴,那么k就是该直线的斜率(这就涉及到开头那个小知识点了)

到最有趣的等积线:平面内以

equation?tex=%5Cvec%7BOA%7D%2C%5Cvec%7BOB%7D
为基底的向量
equation?tex=%5Cvec%7BOP+%7D
,若
equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu+%5Cvec%7BOB%7D

equation?tex=%5Clambda%5Ctimes%5Cmu%3Dk
(定值),则P点在以直线 OA,OB为渐近线的某条双曲线上;反之,

点 P在以直线 OA,OB为渐近线的某条双曲线上,

equation?tex=%5Clambda%5Ctimes%5Cmu
为定值.我们把以直线 OA,OB 为渐近线 的双曲线叫平面向量基本定理系数的等积线

与上面三个不同,他们都是直线,而这里的等积线是双曲线

dbd4f83e8d5c6d338096c7d261c56d00.png

以 0 为原点,∠AOB平分线所在直线为x轴 ,建立直角坐标系 ,设

equation?tex=%5Cvec%7BOA%7D%3D%28a%EF%BC%8Cb%29

equation?tex=%5Cvec%7BOB%7D%3D%EF%BC%88c%EF%BC%8Cd%EF%BC%89,若点 A 关于x轴对称点为B‘,则
equation?tex=%5Cvec%7BOB%E2%80%99%7D%3D%EF%BC%88a%EF%BC%8C-b%EF%BC%89

equation?tex=%5Cvec%7BOB%27%7D%3Dt%5Cvec%7BOB%7D

那么 :

equation?tex=%5Cvec%7BOP%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cmu%5Cvec%7BOB%7D%3D%5Clambda+%5Cvec%7BOA%7D%2B%5Cfrac%7B%5Cmu%7D%7Bt%7D%5Cvec%7BOB%27%7D%5C%5C%3D%5Clambda%28a%EF%BC%8Cb%29%2B%5Cfrac%7B%5Cmu%7D%7Bt%7D%EF%BC%88a%EF%BC%8C-b%EF%BC%89%5C%5C

equation?tex=x%3D%5Clambda+a%2B%5Cfrac%7B%5Cmu%7D%7Bt%7Da%5C%5Cy%3D%5Clambda+b-%5Cfrac%7B%5Cmu%7D%7Bt%7Db

那么

equation?tex=%5Cfrac%7Bx%7D%7Ba%7D%2B%5Cfrac%7By%7D%7Bb%7D%3D2%5Clambda+%5C%5C+%5Cfrac%7Bx%7D%7Ba%7D-%5Cfrac%7By%7D%7Bb%7D%3D2%5Cfrac%7B%5Cmu%7D%7Bt%7D

相乘得:

equation?tex=%5Cfrac%7Bx%5E%7B2%7D%7D%7Ba%5E2%7D-%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D4%5Cfrac%7B%5Cmu+%5Clambda%7D%7Bt%7D

(1)当双曲线有一支在∠AOB 内时,

equation?tex=%5Clambda%5Cmu为正值 ;

(2)当双曲线都不在∠AOB内时,

equation?tex=%5Clambda%5Cmu 为负值 ;

(3)特别地,

equation?tex=%5Cvec%7BOA%7D%3D%28a%EF%BC%8Cb%29
equation?tex=%5Cvec%7BOB%7D%3D%EF%BC%88a%EF%BC%8C-b%EF%BC%89时,

点 P 在双曲线

equation?tex=%5Cfrac%7Bx%5E%7B2%7D%7D%7Ba%5E2%7D-%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1 上,此时
equation?tex=%5Clambda%5Cmu=
equation?tex=%5Cfrac%7B1%7D%7B4%7D

至此,平面向量等值线搞定了

二 . 三角形四心与奔驰定理

奔驰定理应该很多人知道,网上证法也是一大堆,这里有一个巧妙的证法

3b4d20d4faf7833ade79a00d2f9ab7b5.png

奔驰定理 :

equation?tex=S_A%5Cvec%7BWA%7D%2BS_B+%5Cvec%7BWB%7D++++%2BS_C%5Cvec%7BWC%7D%3D%5Cvec%7B0%7D

我们先证明一个引理。

引理:空间中任意四点W、A、B、C共面的充要条件为:

equation?tex=%5Coverrightarrow%7BOW%7D+%3D+x%5Coverrightarrow%7BOA%7D%2By%5Coverrightarrow%7BOB%7D%2Bz%5Coverrightarrow%7BOC%7D%28x%2By%2Bz%3D1%29

其中O为空间内任意一点。

证明:

equation?tex=%5Coverrightarrow%7BOW%7D+%3D+%281-y-z%29%5Coverrightarrow%7BOA%7D%2By%5Coverrightarrow%7BOB%7D%2Bz%5Coverrightarrow%7BOC%7D

equation?tex=+%5Coverrightarrow%7BOW%7D-%5Coverrightarrow%7BOA%7D%3D+y%28%5Coverrightarrow%7BOA%7D-%5Coverrightarrow%7BOB%7D%29%2Bz%28%5Coverrightarrow%7BOC%7D-%5Coverrightarrow%7BOC%7D%29

equation?tex=%5Coverrightarrow%7BAW%7D%3Dy%5Coverrightarrow%7BAB%7D%2Bz%5Coverrightarrow%7BAC%7D

∴ W、A、B、C四点共面(共面向量基本定理)

由于O是任意一点,故取O点就为W点,那么就可以得到下面的四点共面基本定理

空间四点W、A、B、C共面

equation?tex=%5CLeftrightarrow+x%5Coverrightarrow%7BWA%7D%2By%5Coverrightarrow%7BWB%7D%2Bz%5Coverrightarrow%7BWC%7D%3D0%28x%2By%2Bz%3D1%29
  1. 进一步可以证明,如果点W位于直线AB上,则z=0,W位于直线BC上,则x=0,W位于直线AC上,则y=0。
  2. 如果W是
    equation?tex=%5Ctriangle+ABC内部的点,则
    equation?tex=x%3E0
    equation?tex=y%3E0
    equation?tex=z%3E0
  3. 如果W是
    equation?tex=%5Ctriangle+ABC外部的点,当W与A在BC的两侧,则
    equation?tex=x%3C0,当W与B在AC的两侧,则
    equation?tex=y%3C0,当W与C在AB的两侧,则
    equation?tex=z%3C0

由于

equation?tex=S_%7B%5Ctriangle%7D+%3D+S_a%2BS_b%2BS_c,因而我们可以取
equation?tex=x+%3D+%5Cfrac%7BS_a+%7D%7BS_%5Ctriangle+%7D
equation?tex=y+%3D+%5Cfrac%7BS_b+%7D%7BS_%5Ctriangle+%7D
equation?tex=z+%3D+%5Cfrac%7BS_c+%7D%7BS_%5Ctriangle+%7D,于是:
equation?tex=%5Cfrac%7BS_a+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWA%7D%2B%5Cfrac%7BS_b+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWB%7D%2B%5Cfrac%7BS_c+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWC%7D%3D0

即:
equation?tex=S_a+%5Coverrightarrow%7BWA%7D%2BS_b%5Coverrightarrow%7BWB%7D%2BS_c+%5Coverrightarrow%7BWC%7D%3D0

记为 三角形内点向量式
采用解析几何的表达方式,设
equation?tex=A%28x_1%2Cy_1%29
equation?tex=B%28x_2%2Cy_2%29
equation?tex=C%28x_3%2Cy_3%29
equation?tex=W%28x_w%2Cy_w%29,则有:
equation?tex=x_w+%3D+%5Cfrac%7BS_ax_1%2BS_bx_2%2BS_cx_3%7D%7BS_%5Ctriangle+%7D
equation?tex=y_w+%3D+%5Cfrac%7BS_ay_1%2BS_by_2%2BS_cy_3%7D%7BS_%5Ctriangle+%7D

1.重心G
由于重心分中线长之比为2:1,则有
equation?tex=S_a%3DS_b%3DS_c%3D%5Cfrac%7B1%7D%7B3%7DS_%5Ctriangle+,于是重心坐标为:
equation?tex=G%28%5Cfrac%7Bx_1%2Bx_2%2Bx_3%7D%7B3%7D%2C%5Cfrac%7By_1%2By_2%2By_3%7D%7B3%7D%29

2.内心I
由于
equation?tex=S_a+%3D+%5Cfrac%7B1%7D%7B2%7Dar
equation?tex=S_a+%3D+%5Cfrac%7B1%7D%7B2%7Dbr
equation?tex=S_a+%3D+%5Cfrac%7B1%7D%7B2%7Dcr
equation?tex=S_a+%3D+%5Cfrac%7B1%7D%7B2%7D%28a%2Bb%2Bc%29r,则有内心坐标为:
equation?tex=I%28%5Cfrac%7Bax_1%2Bbx_2%2Bcx_3%7D%7Ba%2Bb%2Bc%7D%2C%5Cfrac%7Bay_1%2Bby_2%2Bcy_3%7D%7Ba%2Bb%2Bc%7D%29

3.外心O
由于
equation?tex=S_a%3D+%5Cfrac%7B1%7D%7B2%7D+R%5E2++sin2A
equation?tex=S_b%3D+%5Cfrac%7B1%7D%7B2%7D+R%5E2++sin2B
equation?tex=S_c%3D+%5Cfrac%7B1%7D%7B2%7D+R%5E2++sin2C
equation?tex=S_%5Ctriangle+%3D+%5Cfrac%7B1%7D%7B2%7D+R%5E2+%28sin2A+%2B+sin2B%2B+sin2C%29,则有外心坐标为:
equation?tex=O%28%5Cfrac%7Bsin2A%5Ccdot+x_1+%2B+sin2B%5Ccdot+x_2+%2Bsin2C%5Ccdot+x_3%7D%7Bsin2A%2Bsin2B%2Bsin2C%7D%2C%5Cfrac%7Bsin2A%5Ccdot+y_1+%2B+sin2B%5Ccdot+y_2+%2Bsin2C%5Ccdot+y_3%7D%7Bsin2A%2Bsin2B%2Bsin2C%7D%29

4.旁心P
以c一边的旁心为例,
equation?tex=S_a%3D%5Cfrac%7B1%7D%7B2%7Dar_c
equation?tex=S_b%3D%5Cfrac%7B1%7D%7B2%7Dbr_c
equation?tex=S_c%3D%5Cfrac%7B1%7D%7B2%7Dcr_c,因为c边旁切圆圆心在三角形c边一侧的外面,因而
equation?tex=S_c取负值,所以旁心坐标为:
equation?tex=P%28%5Cfrac%7Bax_1%2Bbx_2-cx_3%7D%7Ba%2Bb%2Bc%7D%2C%5Cfrac%7Bay_1%2Bby_2-cy_3%7D%7Ba%2Bb%2Bc%7D%29

以上奔驰定理笔记摘自:三横先生链接:https://zhuanlan.zhihu.com/p/25877014

四心常见的表达式:

equation?tex=%5Cvec%7BOA%7D%2B%5Cvec%7BOB%7D%2B%5Cvec%7BOC%7D%3D%5Cvec%7B0%7D ,则O为重心

equation?tex=%5Cvec%7BOA%7D%5Cbullet%5Cvec%7BOB%7D%3D%5Cvec%7BOB%7D%5Cbullet%5Cvec%7BOC%7D%3D%5Cvec%7BOA%7D%5Cbullet%5Cvec%7BOC%7D%3D%5Cvec%7B0%7D

或者

equation?tex=tanA%5Ccdot%5Cvec%7BOA%7D%2BtanB%5Ccdot%5Cvec%7BOB%7D%2BtanC%5Ccdot%5Cvec%7BOC%7D%3D%5Cvec%7B0%7D .则O为垂心

equation?tex=sin2A%5Ccdot%5Cvec%7BOA%7D%2Bsin2B%5Ccdot%5Cvec%7BOB%7D%2Bsin2C%5Ccdot%5Cvec%7BOC%7D%3D%5Cvec%7B0%7D ,则O为外心

equation?tex=sinA%5Ccdot%5Cvec%7BOA%7D%2BsinB%5Ccdot%5Cvec%7BOB%7D%2BsinC%5Ccdot%5Cvec%7BOC%7D%3D%5Cvec%7B0%7D ,则O为内心

举个例子:在▲ABC中,cosA=

equation?tex=%5Cfrac%7B7%7D%7B8%7D
equation?tex=a%5Ccdot%5Cvec%7BOA%7D%2Bb+%5Ccdot%5Cvec%7BOB%7D%2Bc%5Ccdot%5Cvec%7BOC%7D%3D%5Cvec%7B0%7D
equation?tex=%5Cvec%7BAO%7D%3Dx%5Cvec%7BAB%7D%2By%5Cvec%7BAC%7D
求x+y的最大值。

通解就不写了, 做个图

dadfa98ffba5b5f71ae8f9915162f966.png

易得:cos∠OAN=

equation?tex=%5Cfrac%7B%5Csqrt%7B15%7D%7D%7B4%7D , 不妨设ON=OX=1,则AO=4

equation?tex=x%2By%3D%5Cfrac%7BAO%7D%7BAO%2BOM%7D%5Cleq%5Cfrac%7BAO%7D%7BAO%2BOX%7D%3D%5Cfrac%7B4%7D%7B5%7D ,当且仅当AB=AC时,等号成立

其实奔驰定理中还隐藏着等值线

equation?tex=%5Cfrac%7BS_a+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWA%7D%2B%5Cfrac%7BS_b+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWB%7D%2B%5Cfrac%7BS_c+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWC%7D%3D0

equation?tex=%5CRightarrow
equation?tex=%5Cfrac%7BS_b+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWB%7D%2B%5Cfrac%7BS_c+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWC%7D%3D%5Cfrac%7BS_b%2BS_c-S_%5Ctriangle+%7D%7BS_%5Ctriangle+%7D%5Coverrightarrow%7BWA%7D

equation?tex=%5CRightarrow
equation?tex=%5Cvec%7BAW%7D%3D%5Cfrac%7BS_b%7D%7BS%7D%28%5Cvec%7BWB%7D-%5Cvec%7BWA%7D%29%2B%5Cfrac%7BS_c%7D%7BS%7D%28%5Cvec%7BWC%7D-%5Cvec%7BWA%7D%29

equation?tex=%5CRightarrow
equation?tex=%5Cvec%7BAW%7D%3D%5Cfrac%7BS_b%7D%7BS%7D%5Cvec%7BAB%7D%2B%5Cfrac%7BS_c%7D%7BS%7D%5Cvec%7BAC%7D

3b4d20d4faf7833ade79a00d2f9ab7b5.png

看出来了吗?

三 . 极化恒等式及其变形推论

首先是极化恒等式:

equation?tex=%5Cvec%7Ba%7D%5Ccdot%5Cvec%7Bb%7D%3D%EF%BC%88%5Cfrac%7B%5Cvec%7Ba%7D%2B%5Cvec%7Bb%7D%7D%7B2%7D%EF%BC%89%5E2-%EF%BC%88%5Cfrac%7B%5Cvec%7Ba%7D-%5Cvec%7Bb%7D%7D%7B2%7D%EF%BC%89%5E2

化简就是:

equation?tex=%5Cvec%7BAB%7D%5Ccdot%5Cvec%7BAD%7D%3D%5Cleft%7C+%5Cvec%7BAO%7D+%5Cright%7C%5E2-%5Cleft%7C+%5Cvec%7BOB%7D+%5Cright%7C%5E2

d49c1b34e0dd5801b7e439054aa766d9.png

至于这个有什么用呢,能被这条式子解决的问题多如牛毛,举个例子

2bf16830f655c628a171a0a758a0e9ab.png

但有些题目不会这么简单就问你

equation?tex=%5Cvec%7BAB%7D%5Ccdot%5Cvec%7BAD%7D 等于多少,可能变着法来问,比如
equation?tex=%5Cvec%7BAO%7D%5Ccdot%5Cvec%7BDB%7D

那么极化恒等式就可以变一下形:

equation?tex=%5Cvec%7BAO%7D%5Ccdot%5Cvec%7BDB%7D%3D%5Cfrac%7B%5Cleft%7C+%5Cvec%7BAB%7D+%5Cright%7C%5E2-%5Cleft%7C+%5Cvec%7BBC%7D+%5Cright%7C%5E2%7D%7B2%7D ,这是其中一个简单的变形

还有:

equation?tex=%5Cvec%7Ba%7D%5E2%2B%5Cvec%7Bb%7D%5E2%3D2%5Ccdot%28%EF%BC%88%5Cfrac%7B%5Cvec%7Ba%7D%2B%5Cvec%7Bb%7D%7D%7B2%7D%EF%BC%89%5E2%2B%EF%BC%88%5Cfrac%7B%5Cvec%7Ba%7D-%5Cvec%7Bb%7D%7D%7B2%7D%EF%BC%89%5E+2%29%3D2%28%5Cleft%7C+%5Cvec%7BAO%7D+%5Cright%7C%5E2%2B%5Cleft%7C+%5Cvec%7BOB%7D+%5Cright%7C%5E2%29 ,

这个变形就推导出中线长公式.

那么由此我们可以得出,在平行四边形ABCD平面内存在一点P,有:

equation?tex=%28%5Cleft%7C+PB%5Cright%7C%5E2%2B%5Cleft%7C+PD+%5Cright%7C%5E2%29-%28%5Cleft%7C+PA+%5Cright%7C%5E2%2B%5Cleft%7C+PC+%5Cright%7C%5E2%29%3D2%28%5Cleft%7C+OB+%5Cright%7C%5E2-%5Cleft%7C+OA%5Cright%7C%5E2%29

若平行四边形ABCD为矩形,则有:

equation?tex=%5Cleft%7C+PB%5Cright%7C%5E2%2B%5Cleft%7C+PD+%5Cright%7C%5E2%3D%5Cleft%7C+PA+%5Cright%7C%5E2%2B%5Cleft%7C+PC+%5Cright%7C%5E2

这里写一条例题吧,题目大意:

equation?tex=%5Cleft%7C+%5Cvec%7Ba%7D+%5Cright%7C%3D%5Cleft%7C+%5Cvec%7Bb%7D+%5Cright%7C%3D2%EF%BC%8C%5Cleft%7C+%5Cvec%7Bc%7D+%5Cright%7C%3D1%EF%BC%8C%EF%BC%88%5Cvec%7Ba%7D-%5Cvec%7Bc%7D%EF%BC%89%5Ccdot%EF%BC%88%5Cvec%7Bb%7D-%5Cvec%7Bc%7D%EF%BC%89%3D0
equation?tex=%5Cleft%7C+%5Cvec%7Ba%7D-%5Cvec%7Bb%7D+%5Cright%7C
最值。

代数比较麻烦,不妨用几何法,先画个图

516cae4a513c08dec3545fc4cec25e51.png

易得:

equation?tex=%5Cleft%7C+a%5Cright%7C%5E2%2B%5Cleft%7C+b+%5Cright%7C%5E2%3D%5Cleft%7C+c%5Cright%7C%5E2%2B%5Cleft%7C+OP%5C+%5Cright%7C%5E2%5C%5C%5CRightarrow%5Cleft%7C+OP%5C+%5Cright%7C%5E2%3D7

又∵

equation?tex=%5Cleft%7C+%5Cvec%7BOP%7D+%5Cright%7C%3D%5Cleft%7C+%5Cvec%7BOC%7D+%2B%5Cvec%7BCP%7D%5Cright%7C+%5Cleq%5Cleft%7C+%5Cvec%7BOC%7D+%5Cright%7C%2B%5Cleft%7C+%5Cvec%7Ba%7D-%5Cvec%7Bb%7D++%5Cright%7C%5C%5C%5CRightarrow%5Cleft%7C+%5Cvec%7Ba%7D-%5Cvec%7Bb%7D++%5Cright%7C%5Cgeq%5Csqrt%7B7%7D-1

同理:

equation?tex=%5Cleft%7C+%5Cvec%7Ba%7D-%5Cvec%7Bb%7D++%5Cright%7C%5Cleq%5Csqrt%7B7%7D%2B1

综上:

equation?tex=%5Cleft%7C+%5Cvec%7Ba%7D-%5Cvec%7Bb%7D++%5Cright%7C%5Cin%5B%5Csqrt%7B7%7D-1%2C%5Csqrt%7B7%7D%2B1%5D

还有余弦定理的变形:

equation?tex=%5Cvec%7BAD%7D%5Ccdot%5Cvec%7BAB%7D%3D%5Cfrac%7BAB%5E%7B2%7D%2BAD%5E%7B2%7D-BD%5E%7B2%7D%7D%7B2%7D ,这个式子单独没什么用,不过拿它来证明下面的式子,就好用了

equation?tex=%5Cvec%7BAC%7D%5Ccdot%5Cvec%7BBD%7D%3D%5Cfrac%7BAD%5E%7B2%7D%2BBC%5E%7B2%7D-%28AB%5E%7B2%7D%2BCD%5E%7B2%7D%29%7D%7B2%7D ,

0a9112cc9e85517008340d40862dd3da.png

证明:

equation?tex=%5Cvec%7BAC%7D%5Ccdot%5Cvec%7BBD%7D%3D%5Cvec%7BAC%7D%5Ccdot%EF%BC%88%5Cvec%7BAD%7D-%5Cvec%7BAB%7D%EF%BC%89%5C%5C%3D%5Cfrac%7BAC%5E%7B2%7D%2BAD%5E%7B2%7D-CD%5E%7B2%7D%7D%7B2%7D-%5Cfrac%7BAC%5E%7B2%7D%2BAB%5E%7B2%7D-CB%5E%7B2%7D%7D%7B2%7D%5C%5C%3D%5Cfrac%7BAD%5E%7B2%7D%2BBC%5E%7B2%7D-%28AB%5E%7B2%7D%2BCD%5E%7B2%7D%29%7D%7B2%7D

这个式子不仅可以用来算四边形对角线夹角的余弦值,更强大的是能算两异面直线夹角的余弦值,也就是三棱锥对边夹角的余弦值

c01d663cd05eb6d94cd742e46ed4fe44.png
懒得打字。。。

证法同上,也不难

5c44bb7589ac1faf7dcebea1868e0c15.png

这种题直接做就完了

equation?tex=%5Cvec%7BAC%7D%5Ccdot%5Cvec%7BBD%7D%3D%5Cfrac%7BAD%5E%7B2%7D%2BBC%5E%7B2%7D-%28AB%5E%7B2%7D%2BCD%5E%7B2%7D%29%7D%7B2%7D+ ,特别的,当AC⊥BD时,
equation?tex=AD%5E%7B2%7D%2BBC%5E%7B2%7D%3DAB%5E%7B2%7D%2BCD%5E%7B2%7D , 这不禁让我想起托勒密定理和婆罗摩笈多定理。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值