matlab线性平面映射求通项_MP8:局部线性化:从Taylor展开到微分形式

2f2a571b233b38d9528fa9039e7086de.png

本讲回顾了高等数学/数学分析中经典的Taylor展开技术。我们关注的是Taylor展开的线性部分,这部分的线性系数就是函数的导数。在多元函数中,这部分的一组线性系数构成了某种线性组合。

站在线性代数的角度看待Taylor展开的线性部分,我们考虑两个问题:

坐标的微分能否构成某种线性空间的向量?

坐标的微分能否构成这个线性空间的基?

我们研究了坐标分量函数,这类函数的微分就是坐标的微分,几何上它们构成了一组正交的超平面系。借助这类函数,我们发展出了微分形式的概念,确认了以上两个问题,即坐标的微分就是对偶空间的向量,坐标的微分正是这个线性对偶空间的基。

之后我们研究了这类微分形式的几何意义,通过它们线性组合,可以构成具有任意梯度的微分形式。

广告:高中生想快速学会微积分、线性代数,尝试大学数学物理知识戳这里网上私教 学霸养成。


上一讲中,我们在考虑如何把

上的向量场推广到一般的光滑流形
时,遇到了一些问题。这些问题反映出流形和平直空间内在的不同。这些问题的解决需要等到完全理解
切空间/余切空间的概念。在展开讲解之前,在这一讲中我们先谈谈局部线性化的思想,同时储备一些技术工具。

回顾微分流形

的定义,其中提到

使得开邻域
中的开集同胚。

这使我们注意到:

  1. 这里是逐点定义的,且只考虑每一点的某个邻域的存在性。这提示我们采用了局部的方法。
  2. 局部(开邻域)和
    中的开集同胚,意味着在局部试图接近
    这样的平直空间,所谓平直,就是
    线性,实际上
    中嵌入的平直空间(直线、平面、超平面)就称为
    线性流形

这些思路,我们总结为局部线性化。局部线性化的思想贯穿于微分几何的研究中,这也是我们一直强调同学们学好线性代数的原因(另一个思想是借助拓扑学的整体微分几何)。这一讲中,我们详细谈一下如何借助古老的Taylor展开技术,把局部线性化的方法发展为微分形式。

Taylor展开

微积分中我们熟知Taylor展开,在一维的情况,函数

在点
附近可以写为幂级数和的形式:

注意到

次项
是常数项,而当
求极限时:

处求导将消去
次以上高阶无穷小量,只剩下
次的线性项,得到我们熟知的关系:

站在我们现在的角度看,Taylor展开就是一种函数逼近技术,当考察固定点

附近的局部(邻域)时,成为了一种
线性化的,只保留一次导数
的逼近。

注意到Taylor展开的局部线性化也可以表示成:

这一方面反映了导数的局部线性的性质,另一方面,导数

在固定点上是常数,它本身可以视为
线性系数。在
维看得更加清楚。
维函数
在点
附近的Taylor展开,进行局部线性化后得到:

这里用了Einstein求和约定。显然,偏导数

起到了
线性系数的作用。现在我们得到了某种类似 线性组合的关系。然而,若要放心地用线性代数的方法来处理,我们首先需要明确两个问题:
  1. 是否是某个向量空间中的向量?
  2. 如果是,
    能否构成基?

如果我们能够解决这两个问题,过去我们所理解的所谓无穷小量微分将被赋予线性空间的新的内涵,它是将来要讨论的余切向量的原形。

超平面系

中,记自然基为
。考虑一组特殊的函数
分量函数
,其中每一个表现为:

即把点

的第
个分量
输出为函数值。
注意:指标
在上面表示它是
函数

指标在下面表示它是坐标 分量

分量函数

对分量
求偏导数:

这里用了Kronecker记号。于是仅在指标

时有意义:

上式中,左边的指标

在上面表示函数的微分,右边的指标在下面表示自变量的微分。我们理解为,
函数微分自变量微分可以等同看待。

由分量函数的函数微分和自变量微分的等同关系可见,分量函数

的几何意义是,每一个函数
都是线性函数,它构成一个
超平面(线性流形),这组超平面相互 正交

1-微分形式

维实线性函数所构成的空间记为
。这个线性函数空间蕴含了自然的线性运算,即

我们注意到上面讨论的分量函数

中的每个函数都是

维实线性函数。前面谈到它们构成了正交的超平面,代数上意味着
是函数空间
中的
线性无关子集。

现在考虑某一点

附近的线性函数空间
。如前面的讨论,任意函数
在点
附近若可微,则可以通过Taylor展开,在
附近消去高阶无穷小量后,局部视为一个线性函数

更重要的,可以把这个线性函数

表达为点
附近分量函数

的线性组合:

对它求全微分:

这里的

是线性系数。这里出现的
既可以视为变量
的微分,也可以视为函数
的微分。
非常重要!回到前面我们提出的问题:
  1. 是否是某个向量空间中的向量?
  2. 如果是,
    能否构成基?

现在,在某一点

附近,由于
被局部线性化,
的成员都是
中的元素。我们把微分算子
视为从
线性函数空间函数微分集合的映射:

由于微分的线性性,自然可以在函数微分集合

中构建线性运算,构成线性的
函数微分空间。于是,
是函数微分线性空间
中的向量。

其次,由于

是一个线性无关的集合,可以证明微分算子
将它映射成函数微分线性空间
中的基

最后,根据全微分公式:

即:任意函数

在点
附近若可微,则可以通过Taylor展开在
附近进行局部线性化,得到函数微分
,它是基
的线性组合。

这个函数微分线性空间

中的元素称为
1-微分形式(differential form),简称 1-形式。本质上,1-形式相当于局部(在相差一个常数的意义下等价,后面详述)线性函数。

1-形式的几何直观

函数

的几何意义是,在点
附近,每一个函数
都是
中的线性函数,它构成一个
超平面(线性流形),这组超平面相互 正交

微分算子

将这组线性函数映射成函数微分,即:

注意这种映射不是单射,若有任意实数

则:

即,相差为常数的线性函数具有相同的函数微分,相同的函数微分对应着等价类。由于任意线性函数也是

的线性组合,这种等价关系对于任意函数微分
都成立。于是满足微分为
的线性函数是一个集合,这个集合中的线性函数两两之间相差一个常数。几何上看,
决定了一组平行的(相差常数)超平面(线性函数)。

作为1-形式,

体现了基
的线性组合,几何上看,每一个基向量(1-微分形式)都代表一组平行超平面,基向量之间相互正交,通过系数(偏导数
)组合,构成了具有任意
梯度的一组平行超平面。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值