背景简介
在数字图像处理中,图像的变换是一个重要的环节,它包括图像的移动、缩放、旋转和翻转等。本篇博客将基于《OpenCV图像处理实战》一书中的内容,探讨图像复制与翻转的实现方法。
图像复制
图像复制是创建图像的精确副本,无需改变其大小或内容。在OpenCV中,我们可以使用remap()函数来实现这一操作。
例4-4:像素复制的代码演示
import cv2 as cv
import numpy as np
# 构建一个6×6的随机数组
image = np.random.randint(0,256,size=[6,6],dtype=np.uint8)
w, h = image.shape # 得到数组的宽与高
# 建立新数组的大小
x = np.zeros((w,h), np.float32)
y = np.zeros((w,h), np.float32)
# 实现新数组的访问操作
for i in range(w):
for j in range(h):
x.itemset((i,j),j)
y.itemset((i,j),i)
rst = cv.remap(image, x, y, cv.INTER_LINEAR) # 实现数组的复制
# 打印输出结果
print("image=\n",image)
print("rst=\n",rst)
例4-5:图像复制操作的代码演示
import cv2 as cv
import numpy as np
image = cv.imread("F:/picture/panda.jpg") # 读取一幅图像
w, h = image.shape[:2] # 得到图像的宽与高
# 建立新图像的大小
map1 = np.zeros((w,h), np.float32)
map2 = np.zeros((w,h), np.float32)
# 实现新图像的访问操作
for i in range(w):
for j in range(h):
# 访问图像
map1.itemset((i,j),j)
map2.itemset((i,j),i)
rst = cv.remap(image, map1, map2, cv.INTER_LINEAR) # 实现图像的复制
# 显示图像
cv.imshow("image", image)
cv.imshow("rst", rst)
cv.waitKey()
cv.destroyAllWindows()
绕轴翻转
图像绕轴翻转是一种特殊类型的图像变换,可以是沿x轴或y轴,也可以是同时绕这两轴。
例4-6:像素数组绕x轴翻转的代码演示
import cv2 as cv
import numpy as np
# 构建一个6×6的随机数组
image = np.random.randint(0,256,size=[6,6],dtype=np.uint8)
w, h = image.shape # 得到数组的宽与高
# 建立新数组的大小
x = np.zeros((w,h), np.float32)
y = np.zeros((w,h), np.float32)
# 实现新数组的访问操作
for i in range(w):
for j in range(h):
x.itemset((i,j),j)
y.itemset((i,j),w-1-i)
rst = cv.remap(image, x, y, cv.INTER_LINEAR) # 实现数组绕x轴翻转
# 打印输出结果
print("image=\n",image)
print("rst=\n",rst)
例4-7:图像绕x轴翻转的代码演示
import cv2 as cv
import numpy as np
image = cv.imread("F:/picture/panda.png") # 读取一幅图像
w, h = image.shape[:2] # 得到图像的宽与高
# 建立新图像的大小
map1 = np.zeros((w,h), np.float32)
map2 = np.zeros((w,h), np.float32)
# 实现新图像的访问操作
for i in range(w):
for j in range(h):
# 访问图像
map1.itemset((i,j),j)
map2.itemset((i,j),w-1-i)
rst = cv.remap(image, map1, map2, cv.INTER_LINEAR) # 实现图像绕x轴翻转
# 显示图像
cv.imshow("image", image)
cv.imshow("rst", rst)
cv.waitKey()
cv.destroyAllWindows()
总结与启发
通过上述章节内容的学习,我们可以掌握如何使用remap()函数进行图像复制与翻转操作。每一种操作都需要正确设置映射函数map1和map2的值,以达到预期的图像变换效果。这些技术对于图像处理和计算机视觉领域非常重要,不仅可以用于图像预处理,也是实现更高级图像分析和理解的基础。
在实践过程中,我们应该深入理解映射过程中的数学原理,这有助于我们在遇到新的图像处理任务时,能够快速设计出解决方案。此外,通过编写代码和观察结果,我们可以更好地理解图像变换的细节和内在机制。
最后,图像变换是图像处理中的一大技术分支,了解并掌握这些基础操作,将为我们后续学习更复杂的技术打下坚实的基础。希望本篇博客能够帮助到正在学习图像处理的朋友们。