欧拉函数求pq java_关于数论中欧拉函数和欧拉定理的简短证明 - dlyme的专栏 - CSDN博客...

关于数论中欧拉函数和欧拉定理的简短证明 收藏

一.欧拉函数的证明

1) p^k的欧拉函数

对于给定的一个素数p,我们知道φ(p) = p-1。

假设一个整数n是p的k次幂,也就是 n = p^k,k∈N+

容易证明 φ(n) = p^k - p^(k-1)

证明: 已知少于小于p^k的正整数个数为p^k-1个,其中

和p^k不互质的正整数有{p×1,p×2,...,p×(p^(k-1)-1)}共计p^(k-1)-1个

所以φ(n) = p^k -1 - (p^(k-1)-1) = p^k - p^(k-1)

2) pq的欧拉函数

假设p,q是两个互质的正整数,则pq的欧拉函数为

φ(pq) = φ(p)φ(q),gcd(p,q)=1

证明:

∵M= pq, gcd(p,q) =1

∴根据中国余数定理,有 Zm和Zp×Zq之间存在一一映射

所以M的完全余数集中元素的个数等于集合Zp×Zq元素的个数

而后者的元素个数为φ(p)φ(q),所以有 φ(pq) = φ(p)φ(q)

3) 任意正整数的欧拉函数

φ(n)=n∏(1-1/p),其中p为能够被n整除的质数

二.欧拉定理的证明

对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n)

证明:

首先证明下面这个命题:

对于集合Zn={x_1,x_2,...,x_φ(n)},考虑集合

S = {ax_1 mod n,ax_2mod n,...,ax_φ(n)mod n}

则S = Zn

1) 由于a,n互质,x_i也与n互质,则ax_i也一定于n互质,因此

任意x_i,ax_i mod n 必然是Zn的一个元素

2) 对于Zn中两个元素x_i和x_j,如果x_i ≠ x_j

则ax_i mod n ≠ ax_j mod n,这个由a、n互质和消去律可以得出。

所以,很明显,S=Zn

既然这样,那么

(ax_1 × ax_2×...×ax_φ(n))mod n

= (ax_1 mod n × ax_2 mod n × ... × ax_φ(n) mod n)mod n

= (x_1 × x_2 × ... × x_φ(n))mod n

考虑上面等式左边和右边

左边等于(a^φ(n) × (x_1 × x_2 × ... × x_φ(n))mod n) mod n

右边等于x_1 × x_2 × ... × x_φ(n))mod n

而x_1 × x_2 × ... × x_φ(n))mod n和n互质

根据消去律,可以从等式两边约去,就得到:

a^φ(n) ≡ 1 (mod n)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值