在初中数学学习过程中,不少同学应该背诵过函数平移的口诀:左加右减,上加下减。
假如不加思考的背诵这个口诀,那其实也能应付大部分情况。
但假如想要思考下口诀的来源,开始可能只有困惑。
比如,对于平面坐标系,右侧是x轴正方向,上侧是y轴正方向。第一印象,两者应该同时加或者减,而结论却是一加一减。
下面我以二次函数
开始位置,毫无疑问,顶点

我将其向上移动两个单位得到
顶点变成

在将函数图形向右平移3个单位得到
顶点变成

这时候,似乎矛盾的结论出现了。
将函数向上平移两个单位,向右平移三个单位后。
对于函数,分别是-3,和+2。
但是顶点坐标却忠实的+3和+2.
似乎顶点坐标是一个乖宝宝,和我们开始设想的往x轴和y轴正方向平移后数值会增加。
但函数本身却似乎不是。。。
回到开头,往x轴平移是x那边有变化,也就是等号右边有变化。
那么往y轴平移为什么也是等号右边的变化,假如我们把变化量放到左边会有什么不同。
我们移动常数项2的位置
那么原来的
似乎我们找到了答案。
往x轴正方向平移,对于x的分量是减,也就是左加右减。
往y轴正方向平移,对于y的分量是减,也就是下加上减。
但这个有和顶点坐标的变化是相反的。
如何理解呢,对于坐标上的点,往右和往上,是毫无疑问的会是坐标数值增加。
而为了补偿这个增加,函数本身需要扣除相应的增加量。
而这里面函数上的点不局限于顶点,函数也不局限于二次函数。
如下图,二次函数上另一点B(0,2)也随函数整体平移而平移。



如图,对于函数

向右平移5个单位

向下平移7个单位。

结果和我们猜测的结论一致,上面点坐标平移,含有这些点的函数本身需要补偿这些变化,需要在反方向改变。