bp算法用于图像分割_AIDE:用于自动医学图像分割的注释高效深度学习

AIDE是一种注释高效的深度学习框架,针对医学图像分割,能在稀缺或嘈杂注释的数据集上显著提升分割效果,提高分割Dice分数达30%。通过更好地探索图像内容,AIDE能逐步纠正低质量注释,且在乳腺图像分割中展现出与全监督模型相当的性能,同时减少对专家标签的依赖。
摘要由CSDN通过智能技术生成

8a6a1c8e2f74f52ad7d163d30fcbf8a2.png

本文提出了AIDE:注释高效的深度学习框架,其通过更好地探索图像内容来逐步纠正低质量的注释。在具有稀缺或嘈杂注释的数据集上,AIDE可以将传统深度学习模型的分割Dice分数提高多达30%!代码可能会开源吧,我看给了github链接...

注1:文末附【医疗影像】和【图像分割】学习交流群

注2:欢迎点赞,支持分享!

AIDE: Annotation-efficient deep learning for automatic medical image segmentation

23560c4e9f4f7515badc443c0aa31716.png
作者单位(这单位联名有点6的啊):中科院, 贵州省/广东省/河南省人民医院, 武汉市人民医院, 东南大学等
代码: https:// github.com/lich0031/AID E
论文: https:// arxiv.org/abs/2012.0488 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值