Efficient Deep Learning for Stereo Matching

摘:product layer计算双塔结构网络的内积。问题是多分类识别问题,类别是各种可能的偏移,可以获得矫正得分,与现在的方法相比匹配效果更好。

介:

以前,给一个左图,然后网络判断右图是不是一个合适的匹配。这是一个二分类。相反,这篇文章设计匹配网络可以产生精确的结果。为了达到这样的效果,产生一个product层来计算双塔结构的两个表示的内积。将此类问题看成多分类问题,每一类都是可能的偏移。这将产生矫正得分。将会带来更佳的匹配性能。

2.相关工作

早些年的工作大都集中在合适的计算匹配成本。学习被用在能量最小化的参数调节上。slanted模型是非常鲁棒的。具有着悠久的历史。这篇论文两个贡献:1.对所有的偏移值都有平滑目标分布来预测。因此,我们可以获得不同偏移的相关值。这限制了图像块的独立二值预测。第二,使用了点product层来连接网络的两个分支。这将使得我们更快的计算。

3.立体匹配的深度学习

根据立体图对来计算距离图像。假设图像对是矫正后的,因此核线是与水平图像的轴线相均衡。yi代表着第i个像素的偏差。|yi|就是数据集的基。立体算法估算左图上每个像素的3维成本。通过开采给定像素周边块且将每个块的人工简单表示来完成这样的操作。相反,这篇论文中,我们将会学习卷积神经网络如何匹配。

有了这样的目标,我们可以利用双峰结构,每个边分别处理左右图像。特别的是,每个分支都将一个图片作为输入,将其穿过一系列的层。每个都包含一个空间卷积。这个卷积是由5×5的滤波器构成。后面是空间块规范化层和ReLU层。注意到我们将从最后一层中移走ReLU层为了不分散负值的信息。试验中,共享参数同时多尝试每一层中的滤波器。

后续处理相比于融合法。我们使用了product层来进行计算匹配得分的两个代表的点乘。这个简单的操作极大的加快了计算效率。图2所示,4层的网络

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值