python统计图原理_Q-Q图原理详解及Python实现

Q-Q图用于检验数据是否符合正态分布或同一分布。通过对比数据分位数与标准分布分位数,观察散点是否接近y=x直线。文章通过Python示例解释了如何画Q-Q图,并展示了学生考试成绩的Q-Q图,证明成绩大致符合正态分布,但非标准正态分布。
摘要由CSDN通过智能技术生成

QQ图是quantile-quantile(分位数-分位数图) 的简称,上面也有介绍它的两个主要作用:

1.检验一列数据是否符合正态分布

2.检验两列数据是否符合同一分布

Q-Q图的原理

要弄清Q-Q图的原理,我们先来介绍下分位数的概念。这里我们引用下百度百科的介绍:

分位数, 指的就是连续分布函数中的一个点,这个点对应概率p。若概率0

What...?? 是不是感觉有点抽象,别着急,我们继续往下看分位数的实例-百分位数。

百分位数,统计学术语,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数。可表示为:一组n个观测值按数值大小排列。如,处于p%位置的值称第p百分位数。

给大家举个例子:初三年级有1000名学生, 期末考试成绩按照从高到低的顺序排列, 排名第10的同学, 刚好位于全校1000名同学的1%处, 他的分数就是全校期末考试分数的第1百分位数, 记为P1, 同理, 第20名同学对应的分数就是第2百分位数P2, ... 第990名同学的分数为第99百分位数 P99。

那么Q-Q图的原理就是,通过把一列样本数据的分位数与已知分布的一列数据的分位数相比较,从而来检验数据的分布情况。所以, Q-Q图的两个功能都是比较两列数据的分位数是否分布在y=x的直线上。当两列数据行数相同时, 首先将两列数据分别从高到低排序, 直接画散点图就可以了, 当两列数据行数不一样时, 需要分别计算出每列数据的百分位数, 再将两列数据的百分位数画散点图, 检查散点图是否分布在y=x直线附近。

检验数据是否符合正态分布

我们接下来的实例数据及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值