I have 2 matrices = X in R^(n*m) and W in R^(k*m) where k<
Let x_i be the i-th row of X and w_j be the j-th row of W.
I need to find, for each x_i what is the j that maximizes
I can't see a way around iterating over all the rows in X, but it there a way to find the maximum dot product without iterating every time over all of W?
A naive implementation would be:
n = 100;
m = 50;
k = 10;
X = rand(n,m);
W = rand(k,m);
Y = zeros(n, 1);
for i = 1 : n
max_ind = 1;
max_val = dot(W(1,:), X(i,:));
for j = 2 : k
cur_val = dot(W(j,:),X(i,:));
if cur_val > max_val
max_val = cur_val;
max_ind = j;
end
end
Y(i,:) = max_ind;
end
解决方案
Dot product is essentially matrix multiplication:
[~, Y] = max(W*X');