CasADi - 最优控制开源 Python/MATLAB 库

系列文章目录


文章目录


前言


一、介绍

  CasADi 是一款开源软件工具,用于数值优化,特别是最优控制(即涉及微分方程的优化)。该项目由 Joel Andersson 和 Joris Gillis 在鲁汶工程大学工程优化中心 (OPTEC) 在读博士生在 Moritz Diehl 的指导下发起。

  本文档旨在简要介绍 CasADi。阅读之后,您应该能够在 CasADi 的符号框架中制定和处理表达式,使用算法微分高效生成导数信息,为常微分方程(ODE)或微分代数方程(DAE)系统设置、求解和执行正向及辅助敏感性分析,以及制定和求解非线性程序(NLP)问题和最优控制问题(OCP)。

  CasADi 可用于 C++、Python 和 MATLAB/Octave,性能几乎没有差别。一般来说,Python API 的文档最好,比 MATLAB API 稍为稳定。C++ API 也很稳定,但对于 CasADi 入门来说并不理想,因为文档有限,而且缺乏 MATLAB 和 Python 等解释型语言的交互性。MATLAB 模块已成功通过 Octave(4.0.2 或更高

### 如何在MATLAB中使用CasADi #### 安装CasADi 为了能够在MATLAB环境中利用CasADi进行优化计算,需要先下载并安装CasADi。可以从官方网站获取最新版本的CasADi,并按照官方文档中的说明完成安装过程[^1]。 对于MATLAB用户来说,推荐的方式是从Python包索引(PyPI)上通过pip工具来安装CasADi: ```bash pip install casadi ``` 需要注意的是,在某些情况下可能还需要额外配置环境变量以便让MATLAB识别到已安装好的CasADi Python接口。 #### 配置MATLABCasADi集成 成功安装之后,要在MATLAB脚本里加载CasADi模块,可以采用如下命令启动会话: ```matlab import casadi.* ``` 这一步骤确保了后续能够正常使用CasADi所提供的函数和类定义。如果遇到任何路径相关的问题,则应该确认系统的PYTHONPATH已经包含了CasADi的位置;或者考虑直接将CasADi源码目录加入至当前工作区内的搜索路径列表之中。 #### 使用指南 一旦完成了上述准备工作,就可以开始编写基于CasADi的应用程序了。下面给出一段简单的例子展示如何创建符号表达式以及求解最优化问题: ```matlab % 创建两个标量决策变量 x = MX.sym('x'); y = MX.sym('y'); % 构建目标函数f(x,y)=x^2+y^2 f = x^2 + y^2; % 设置约束条件g(x,y):=x+y<=10 g = x + y - 10; % 初始化NLP求解器实例 nlp = struct('f', f, 'g', g, 'x', vertcat(x, y)); solver = nlpsol('solver', 'ipopt', nlp); % 执行数值优化得到最优解 res = solver('lbg', -inf, 'ubg', 0); disp(['Optimal value of x is ', num2str(full(res.x(1)))]); % 显示结果 disp(['Optimal value of y is ', num2str(full(res.x(2)))]); ``` 这段代码片段展示了怎样构建一个非线性规划(NLP)模型并通过调用内置IPopt算法找到全局极小值点。当然实际应用当中可能会涉及到更复杂的数学结构或是特定领域的需求,这时就需要查阅更多关于CasADi API的具体描述资料来进行深入开发了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值