linux下训练分类网络,用训练好的caffemodel来进行分类

用训练好的caffemodel来进行分类

caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序实际上是一样的。

开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel,  供大家下载。要进行图片的分类,这个caffemodel是最好不过的了。所以,不管是用c++来进行分类,还是用Python接口来分类,我们都应该准备这样三个文件:

1、caffemodel文件。

文件名称为:bvlc_reference_caffenet.caffemodel,文件大小为230M左右,为了代码的统一,将这个caffemodel文件下载到caffe根目录下的 models/bvlc_reference_caffenet/ 文件夹下面。也可以运行脚本文件进行下载:

#sudo ./scripts/download_model_binary.py models/bvlc_reference_caffenet

2、均值文件。

有了caffemodel文件,就需要对应的均值文件,在测试阶段,需要把测试数据减去均值。这个文件我们用脚本来下载,在caffe根目录下执行:

#sudo sh ./data/ilsvrc12/get_ilsvrc_aux.sh

执行并下载后,均值文件放在 data/ilsvrc12/ 文件夹里。

3、synset_words.txt文件

在调用脚本文件下载均值的时候,这个文件也一并下载好了。里面放的是1000个类的名称。

数据准备好了,我们就可以开始分类了,我们给大家提供两个版本的分类方法:

一、c++方法

在caffe根目录下的 examples/cpp-classification/ 文件夹下面,有个classification.cpp文件,就是用来分类的。当然编译后,放在/build/examples/cpp_classification/ 下面

我们就直接运行命令:

#sudo ./build/examples/cpp_classification/classification.bin \

models/bvlc_reference_caffenet/deploy.prototxt models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel data/ilsvrc12/imagenet_mean.binaryproto data/ilsvrc12/synset_words.txt examples/images/cat.jpg

命令很长,用了很多的\符号来换行。可以看出,从第二行开始就是参数,每行一个,共需要4个参数

运行成功后,输出top-5结果:

---------- Prediction for examples/images/cat.jpg ----------

0.3134 - "n02123045 tabby, tabby cat"

0.2380 - "n02123159 tiger cat"

0.1235 - "n02124075 Egyptian cat"

0.1003 - "n02119022 red fox, Vulpes vulpes"

0.0715 - "n02127052 lynx, catamount"

即有0.3134的概率为tabby cat, 有0.2380的概率为tiger cat ......

二、python方法

python接口可以使用jupyter notebook来进行可视化操作,因此推荐使用这种方法。

在这里我就不用可视化了,编写一个py文件,命名为py-classify.py

#coding=utf-8#加载必要的库

importnumpy as npimportsys,os#设置当前目录

caffe_root = '/home/xxx/caffe/'sys.path.insert(0, caffe_root+ 'python')importcaffe

os.chdir(caffe_root)

net_file=caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'caffe_model=caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'mean_file=caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'net=caffe.Net(net_file,caffe_model,caffe.TEST)

transformer= caffe.io.Transformer({'data': net.blobs['data'].data.shape})

transformer.set_transpose('data', (2,0,1))

transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))

transformer.set_raw_scale('data', 255)

transformer.set_channel_swap('data', (2,1,0))

im=caffe.io.load_image(caffe_root+'examples/images/cat.jpg')

net.blobs['data'].data[...] = transformer.preprocess('data',im)

out=net.forward()

imagenet_labels_filename= caffe_root + 'data/ilsvrc12/synset_words.txt'labels= np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

top_k= net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]for i innp.arange(top_k.size):print top_k[i], labels[top_k[i]]

执行这个文件,输出:

281n02123045 tabby, tabby cat282n02123159 tiger cat285n02124075 Egyptian cat277n02119022 red fox, Vulpes vulpes287 n02127052 lynx, catamount

caffe开发团队实际上也编写了一个python版本的分类文件,路径为 python/classify.py

运行这个文件必需两个参数,一个输入图片文件,一个输出结果文件。而且运行必须在python目录下。假设当前目录是caffe根目录,则运行:

#cd python#sudo python classify.py ../examples/images/cat.jpg result.npy

分类的结果保存为当前目录下的result.npy文件里面,是看不见的。而且这个文件有错误,运行的时候,会提示

Mean shape incompatible with input shape

的错误。因此,要使用这个文件,我们还得进行修改:

1、修改均值计算:

定位到

mean = np.load(args.mean_file)

这一行,在下面加上一行:

mean=mean.mean(1).mean(1)

则可以解决报错的问题。

2、修改文件,使得结果显示在命令行下:

定位到

#Classify.

start =time.time()

predictions= classifier.predict(inputs, notargs.center_only)print("Done in %.2f s." % (time.time() - start))

这个地方,在后面加上几行,如下所示:

#Classify.

start =time.time()

predictions= classifier.predict(inputs, notargs.center_only)print("Done in %.2f s." % (time.time() -start))

imagenet_labels_filename= '../data/ilsvrc12/synset_words.txt'labels= np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

top_k= predictions.flatten().argsort()[-1:-6:-1]for i innp.arange(top_k.size):print top_k[i], labels[top_k[i]]

就样就可以了。运行不会报错,而且结果会显示在命令行下面。0b1331709591d260c1c78e86d0c51c18.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值