python求矩阵特征值_矩阵理论及其基本运算

矩阵理论在数据分析中扮演重要角色,特别是在主成分分析(PCA)中。Python的numpy库支持矩阵运算,包括求解特征值。特征值描述了特征向量上的信息量,其方差贡献率反映了维度下的信息比例。通过保留高方差贡献率的主成分,可以实现数据降维。
摘要由CSDN通过智能技术生成

作为数学的一个重要分支,矩阵理论具有极为丰富的内容。作为一种基本的工具、矩阵理论在数学学科以及其它领域,如数值分析、最优化理论、概率统计、运筹学、图论、信息科学与技术、管理科学与工程等学科都有十分重要的应用。因此对于数据分析工作者来说,学习矩阵理论及其重要。

矩阵学习视频教程:

6f62f38282d50955e9ac29bf63d90bdb.png

一、python中的矩阵运算

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的matrix包。

1、matrix包的导入

import numpy as npfrom numpy import matrix as mat

2、创建常见的矩阵

>>>data1=mat(zeros((3,3))) #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)>>> data1matrix([[ 0.,  0.,  0.],        [ 0.,  0.,  0.],        [ 0.,  0.,  0.]])>>>data2=mat(ones((2,4))) #创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int>>> data2matrix([[ 1.,  1.,  1.,  1.],        [ 1.,  1.,  1.,  1.]])>>>data3=mat(random.rand(2,2)) #这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix>>> data3matrix([[ 0.57341802,  0.51016034],        [ 0.56438599,  0.70515605]])>>>data4=mat(random.randint(10,size=(3,3))) #生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数>>> data4matrix([[9, 5, 6],        [3, 0, 4],        [6, 0, 7]])>>>data5=mat(random.randint(2,8,size=(2,5))) #产生一个2-8之间的随机整数矩阵>>> data5matrix([[5, 4, 6, 3, 7],        [5, 3, 3, 4, 6]])>>>data6=mat(eye(2,2,dtype=int)) #产生一个2*2的对角矩阵>>> data6matrix([[1, 0],        [0, 1]])a1=[1,2,3]a2=mat(diag(a1)) #生成一个对角线为1、2、3的对角矩阵>>> a2matrix([[1, 0, 0],        [0, 2, 0],        [0, 0, 3]])

3、矩阵的基本运算

(1)、矩阵的乘法

>>>a1=mat([1,2]);      >>>a2=mat([[1],[2]]);>>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵>>> a3matrix([[5]])

(2)矩阵求逆、转置

#矩阵求逆>>a1=mat(eye(2,2)*0.5)>>> a1matrix([[ 0.5,  0. ],        [ 0. ,  0.5]])>>>a2=a1.I  #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵>>> a2matrix([[ 2.,  0.],        [ 0.,  2.]])
#矩阵转置>>> a1=mat([[1,1],[0,0]])>>> a1matrix([[1, 1],        [0, 0]])>>> a2=a1.T>>> a2matrix([[1, 0],        [1, 0]])

(3)求矩阵的特征值和特征向量

import numpy as np  A = np.mat("1 2 3; 2 3 4; 5 4 6")  #创建矩阵print("A\n", A)  inverse = np.linalg.inv(A)print("inverse\n", inverse) eigenvalues = np.linalg.eigvals(A) #单纯的求解矩阵的特征值print("eigenvalues: ", eigenvalues) eigenvalues, eigenvectors = np.linalg.eig(A)print("eigenvalues: ", eigenvalues)   #特征值print("eigenvectors: ", eigenvectors) #特征向量

三、总结

矩阵在实际数据挖掘中具有重要的应用意义,在数据挖掘中,就会直接用特征值来描述对应特征向量方向上包含的信息量,而某一特征值除以所有特征值的和的值就为:该特征向量的方差贡献率(方差贡献率代表了该维度下蕴含的信息量的比例)。

通常经过特征向量变换下的数据被称为变量的主成分,当前m个主成分累计的方差贡献率达到一个较高的百分数(如85%以上)的话,就保留着这m个主成分的数据。实现了对数据进行降维的目的。整个主成分分析的算法(PCA)原理就是应用了矩阵特征值、特征向量的理论。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值