频谱泄漏 matlab,频谱泄漏与窗函数.ppt

第 5 章 随机信号分析 本章主要内容 随机信号简介 随机信号的相关分析 随机信号的功率谱估计 谱估计应用中的问题 平稳随机信号通过线性系统 5.1 随机信号简介 是时间t或n的函数,没有明确的数学关系。 样本无穷多,持续时间无穷长。 对任一时刻t 的集合构成一个随机变量,随着t的变化 我们得到无穷多个随机变量。 用描述随机变量的方法来描述随机信号。 随机信号描述 平稳随机过程 均值和时间无关,是常数;自相关函数与时间的起点无关,只与两点的时间差有关。 不同样本函数计算的均值、自相关函数都一样,则称此随机过程为各态遍历的。 非平稳随机过程 包括所有不满足平稳性要求的随机过程。非平稳随机过程的特性一般是随时间而变化的。 5.2 随机信号的相关分析 一、自相关函数及应用 1 定义 一般随机信号 广义平稳随机信号 各态遍历随机信号 2. 性 质 性质1 若 是实信号, 性质2 性质3 周期平稳过程的自相关函数必是周期函数,且与过程的周期相同。 性质4 性质5 不包含任何周期分量的非周期平稳过程满足 3. 估计 直接估计 快速计算——利用FFT来实现的快速计算 4 自相关函数的应用 检测淹没在随机噪声中的周期信号 广义平稳随机信号 各态遍历随机信号 2、性质 互相关函数与均值 、标准差 有如下关系 不是偶函数,也不对称。 若 与 是两个完全独立无关的信号,则 的最大峰值一般不在 处。 直接方法: 快速傅立叶变换 先通过FFT求得互谱,然后计算互谱的逆傅里叶变换 。 4 互相关函数的应用 测量滞后时间 当系统的输出与输入之间有一定的时间差时,互相关函数在时间差等于信号通过系统所需时间值时,将出现峰值。 设信号传播速度为 ,a和b两点距离 ,则信号由a点传播到b点的时间延迟 确定传递通道 检拾和回收噪声中的信号 系统识别 5.3 随机信号的功率谱估计 随机信号的功率谱密度 功率谱密度性质 功率谱密度与自相关函数的关系 功率谱估计的方法 功率谱估计的应用 互谱密度及其估计 一、随机信号的功率谱密度 由于 是随机过程 的一个样本函数,取哪一个样本函数取决于试验结果 ,且 是随机的。因此, 和 也都是试验结果的随机函数,最好写成 和 。 非负性, 是实函数 当随机信号是实过程时,其功率谱是偶函数,即 按定义从无限区间求得真实频谱,实际是在有限域中计算,这只是真实频谱的一种估计值,称为谱估计。 分类 经典法(线性估计法)—用传统的傅里叶变换分析方法求谱。 间接法(相关估计法)—由数据的自相关序列求功率谱; 直接法(周期图法)—由数据直接用离散傅里叶变换求功率谱。 现代法(非线性估计法) 相关估计法 维纳—欣钦定理:实平稳随机序列的功率谱密度与序列的自相关函数是一对傅里叶变换。 相关估计法具体步骤 将原序列按长度 补零得序列 ; 求 的DFT,得 和它的共轭 ; 计算DFT乘积,并除以 ,得 见(4.2.15) 求IDFT,得 周期图法 假定数据序列{xk}的采样是任意的N(N=2m) 使用适当的窗函数对原始序列{xk}修正。 用FFT计算序列{xk}的离散傅立叶变换。 计算功率谱,得到主频率。(f=k·fs/N) 修正:由于采用窗函数对原始数据修正,因此要再用比例因子修正功率谱值。 说明 采取窗处理减少功率泄漏 。 采取平均化处理减小统计变异性 。 去均值 修正比例因子 从含有噪声的信号中确定主频率 分析电动机噪声产生的原因 不解体的故障判断 利用实测的荷载谱控制振动台来模拟随机环境 利用互谱可以得到系统的频率响应函数; 识别动力学系统的特性; 确定响应对激励的滞后时间。 5.4 谱分析中的几个重要问题 一、预处理 1 预滤波 当信号需要平滑或抑制不需要的频率分量时,可采用滤波的方法。 2 零均值变换 3 趋势项的移动 二、频谱泄漏与窗函数 1 窗函数评价指标 (1)最大旁瓣值 ,即最大旁瓣值与主瓣峰值之比,对数表达

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值