paddlepaddle测试安装_paddlepaddle环境搭建及测试

在Mac环境下,详细介绍了如何通过pip安装PaddlePaddle,然后编写代码实现一个简单的线性回归模型,进行训练并预测。模型经过500次迭代,最终得出9a+5b+2c+10d的值。
摘要由CSDN通过智能技术生成

环境信息:

mac EI Capitan?10.11.6 (15G31),

pip --version

pip 18.0

python --version

Python 2.7.15

安装paddlepaddle开发环境(pip):

pip install paddlepaddle

编写代码:

#!/usr/local/bin/python

# -*- coding: utf-8 -*-

import paddle.fluid as fluid

import numpy as np

#生成数据

np.random.seed(0)

outputs = np.random.randint(5, size=(10, 4))

res = []

for i in range(10):

# 假设方程式为 y=4a+6b+7c+2d

y = 4*outputs[i][0]+6*outputs[i][1]+7*outputs[i][2]+2*outputs[i][3]

res.append([y])

# 定义数据

train_data=np.array(outputs).astype('float32')

y_true = np.array(res).astype('float32')

#定义网络

x = fluid.layers.data(name="x",shape=[4],dtype='float32')

y = fluid.layers.data(name="y",shape=[1],dtype='float32')

y_predict = fluid.layers.fc(input=x,size=1,act=None)

#定义损失函数

cost = fluid.layers.square_error_cost(input=y_predict,label=y)

avg_cost = fluid.layers.mean(cost)

#定义优化方法

sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.05)

sgd_optimizer.minimize(avg_cost)

#参数初始化

cpu = fluid.CPUPlace()

exe = fluid.Executor(cpu)

exe.run(fluid.default_startup_program())

##开始训练,迭代500次

for i in range(500):

outs = exe.run(

feed={'x':train_data,'y':y_true},

fetch_list=[y_predict.name,avg_cost.name])

if i%50==0:

print ('iter={:.0f},cost={}'.format(i,outs[1][0]))

#存储训练结果

params_dirname = "result"

fluid.io.save_inference_model(params_dirname, ['x'], [y_predict], exe)

# 开始预测

infer_exe = fluid.Executor(cpu)

inference_scope = fluid.Scope()

# 加载训练好的模型

with fluid.scope_guard(inference_scope):

[inference_program, feed_target_names,

fetch_targets] = fluid.io.load_inference_model(params_dirname, infer_exe)

# 生成测试数据

test = np.array([[[9],[5],[2],[10]]]).astype('float32')

# 进行预测

results = infer_exe.run(inference_program,

feed={"x": test},

fetch_list=fetch_targets)

# 给出题目为 【9,5,2,10】 输出y=4*9+6*5+7*2+10*2的值

print ("9a+5b+2c+10d={}".format(results[0][0]))

运行代码:

python testLinear.py

输出结果:

iter=0,cost=1514.11755371

iter=50,cost=0.136218622327

iter=100,cost=0.0561065897346

iter=150,cost=0.0232472866774

iter=200,cost=0.00963244494051

iter=250,cost=0.00399107066914

iter=300,cost=0.00165370781906

iter=350,cost=0.000685188453645

iter=400,cost=0.000283911387669

iter=450,cost=0.000117633331683

9a+5b+2c+10d=[99.94308]

?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值