本次讨论一个看似简单,其实内藏玄机的一个有意思的问题,即如何判定一个整型变量x是否溢出。
首先,先复习一下int的范围。int类型在C语言中占4个字节,即32个二进制位。当表示正数时,最高位为符号位(符号位为0),最大的正数是 0111 1111 1111 1111 1111 1111 1111 1111 即2^31 -1 = 2147483647。
当表示负数时,最高位为符号位(符号位为1),最小的负数是 1000 0000 0000 0000 0000 0000 0000 0000 而在计算机中是以补码的形式存储的,C语言规定 1000 0000 0000 0000 0000 0000 0000 0000 的补码为-2147483648
所以C语言中int的取值范围为:-2147483648 ~ 2147483647。
有人可能要说,这里if语句不就能解决问题吗?例如:if(x>-2147483648&&x<2147483647)。然而,这里显然二点不妥。(1)你的如何短时间计算出2^ 31?(2)因为x是int型,即使x溢出,由于存储的限制,那么x的值也必然在这个区间范围内(这里不考虑类型升级)。所以这种判定是不科学的。
下面给出我的思路。
针对(1)如何快速计算2^ 31次方:简单粗暴的用16进制表示出来(),或者利用位运算。将最大值最小值记作int_max 和int_min。
针对(2)我们可以先比较x/10与int_max/10的大小, 再比较最后一位,即可避免上面的尴尬之处。
代码如下: