leetcode120. 三角形最小路径和

120. 三角形最小路径和

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

说明:

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

解题思路

  • 注意:题目“出错”了:
    题中相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。
    实际上是相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 - 1 的两个结点。
    我理解的“上层”是横坐标小的那一个

    题给案例可行进路线如下图所示:
    在这里插入图片描述

从上至下-动态规划
  • 状态转移方程dp[i,j] = min(dp[i-1,j-1],dp[i-1,j]) + triangle[i][j]表示(i,j)位置的最小路径和
//求三角形最小路径和
//动态规划
class Solution {
public:
    //状态转移方程dp[i,j] = min(dp[i-1,j-1],dp[i-1,j]) + triangle[i][j]
    int minimumTotal(vector<vector<int>>& triangle) {
        if(triangle.size()==0)
            return 0;
        if(triangle.size()==1)
            return triangle[0][0];
            
        int n = triangle.size();
        int m = triangle[n-1].size();
        
        vector<vector<int> > dp(n,vector<int>(m,0));
        //初始化dp[0][0]
        dp[0][0] = triangle[0][0];
        int minPath = 0x7f7f7f;
        //dp从第1行开始
        for(int i=1; i<n; ++i){
            for(int j=0; j<triangle[i].size(); ++j){
                if(j==0)
                    dp[i][j] = dp[i-1][j] + triangle[i][j];
                else if(j==triangle[i].size()-1)
                    dp[i][j] = dp[i-1][j-1] + triangle[i][j];
                else 
                    dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j];
                if(i==n-1 && dp[i][j]<minPath)
                    minPath = dp[i][j];
            }
        }
        
        return minPath;
    }
};
执行用时:8 ms, 在所有 C++ 提交中击败了93.12% 的用户
内存消耗:8.6 MB, 在所有 C++ 提交中击败了28.07% 的用户
从上至下-就地规划

不额外创建dp数组

//求三角形最小路径和
//动态规划
class Solution {
public:
    //状态转移方程dp[i,j] = min(dp[i-1,j-1],dp[i-1,j]) + triangle[i][j]
    int minimumTotal(vector<vector<int>>& triangle) {
        if(triangle.size()==0)
            return 0;
        if(triangle.size()==1)
            return triangle[0][0];
    
        int minPath = 0x7f7f7f;
        //dp从第1行开始
        for(int i=1; i<triangle.size(); ++i){
            for(int j=0; j<triangle[i].size(); ++j){
                if(j==0)
                    triangle[i][j] += triangle[i-1][j];
                else if(j==triangle[i].size()-1)
                    triangle[i][j] += triangle[i-1][j-1];
                else 
                    triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]);
                if(i==triangle.size()-1 && triangle[i][j]<minPath)
                    minPath = triangle[i][j];
            }
        }
        
        return minPath;
    }
};
执行用时:8 ms, 在所有 C++ 提交中击败了93.12% 的用户
内存消耗:8.2 MB, 在所有 C++ 提交中击败了88.26% 的用户
从下至上-就地规划
class Solution {
public:
    //状态转移方程dp[i,j] = min(dp[i-1,j],dp[i-1,j-1])
    int minimumTotal(vector<vector<int>>& triangle) {
        if(triangle.size()==0)
            return 0;

        for(int i=triangle.size()-2; i>=0; --i){
            for(int j=0; j<triangle[i].size(); ++j){
                triangle[i][j] += min(triangle[i+1][j],triangle[i+1][j+1]);
            }
        }
        return triangle[0][0];
    }
};
执行用时:8 ms, 在所有 C++ 提交中击败了93.12% 的用户
内存消耗:8.3 MB, 在所有 C++ 提交中击败了67.16% 的用户
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值