120. 三角形最小路径和
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
解题思路
-
注意:题目“出错”了:
题中相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。
实际上是相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 - 1 的两个结点。
我理解的“上层”是横坐标小的那一个题给案例可行进路线如下图所示:
从上至下-动态规划
- 状态转移方程dp[i,j] = min(dp[i-1,j-1],dp[i-1,j]) + triangle[i][j]表示(i,j)位置的最小路径和
//求三角形最小路径和
//动态规划
class Solution {
public:
//状态转移方程dp[i,j] = min(dp[i-1,j-1],dp[i-1,j]) + triangle[i][j]
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.size()==0)
return 0;
if(triangle.size()==1)
return triangle[0][0];
int n = triangle.size();
int m = triangle[n-1].size();
vector<vector<int> > dp(n,vector<int>(m,0));
//初始化dp[0][0]
dp[0][0] = triangle[0][0];
int minPath = 0x7f7f7f;
//dp从第1行开始
for(int i=1; i<n; ++i){
for(int j=0; j<triangle[i].size(); ++j){
if(j==0)
dp[i][j] = dp[i-1][j] + triangle[i][j];
else if(j==triangle[i].size()-1)
dp[i][j] = dp[i-1][j-1] + triangle[i][j];
else
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j];
if(i==n-1 && dp[i][j]<minPath)
minPath = dp[i][j];
}
}
return minPath;
}
};
执行用时:8 ms, 在所有 C++ 提交中击败了93.12% 的用户
内存消耗:8.6 MB, 在所有 C++ 提交中击败了28.07% 的用户
从上至下-就地规划
不额外创建dp数组
//求三角形最小路径和
//动态规划
class Solution {
public:
//状态转移方程dp[i,j] = min(dp[i-1,j-1],dp[i-1,j]) + triangle[i][j]
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.size()==0)
return 0;
if(triangle.size()==1)
return triangle[0][0];
int minPath = 0x7f7f7f;
//dp从第1行开始
for(int i=1; i<triangle.size(); ++i){
for(int j=0; j<triangle[i].size(); ++j){
if(j==0)
triangle[i][j] += triangle[i-1][j];
else if(j==triangle[i].size()-1)
triangle[i][j] += triangle[i-1][j-1];
else
triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]);
if(i==triangle.size()-1 && triangle[i][j]<minPath)
minPath = triangle[i][j];
}
}
return minPath;
}
};
执行用时:8 ms, 在所有 C++ 提交中击败了93.12% 的用户
内存消耗:8.2 MB, 在所有 C++ 提交中击败了88.26% 的用户
从下至上-就地规划
class Solution {
public:
//状态转移方程dp[i,j] = min(dp[i-1,j],dp[i-1,j-1])
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.size()==0)
return 0;
for(int i=triangle.size()-2; i>=0; --i){
for(int j=0; j<triangle[i].size(); ++j){
triangle[i][j] += min(triangle[i+1][j],triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};
执行用时:8 ms, 在所有 C++ 提交中击败了93.12% 的用户
内存消耗:8.3 MB, 在所有 C++ 提交中击败了67.16% 的用户