python高斯滤波和降噪_python高斯滤波和降噪_常见降噪算法及Python、Matlab实现(二)...

本文介绍了高斯低通滤波(Gaussian Low Pass Filter),一种常用的图像降噪方法。通过Python的OpenCV库和Matlab实现高斯滤波,展示如何使用高斯函数生成卷积核进行图像模糊处理。讨论了滤波器大小和标准差对图像模糊程度的影响,并提供了代码示例。
摘要由CSDN通过智能技术生成

本篇主要介绍常见降噪算法之一的高斯低通滤波(Gaussian Low Pass Filter)。获取文中代码和图像请移步我的Github仓库:Gaussian Denoising

Using Python & Matlab。

一、正态分布(Normal Distribution)与高斯函数(Gaussian Function)

上一篇里我们谈到了,散粒噪声(Shot Noise,Poisson Noise)、闪烁噪声(Flicker Noise)、布朗噪声(Brown

Noise)均在一定程度上服从正态分布。正态分布又称高斯分布(Gaussian

Function),是在统计、自然科学和社会科学上非常常用的一个连续概率分布模型。这种概率分布非常奇妙,因为有相当多随机现象的发生如心理学测试分数、光子计数、红细胞数量等,均被发现趋近于正态分布。

forum.php?mod=viewthread&tid=14828894

正态分布概率密度函数图像

正态分布的概率密度函数是高斯函数的一个实例。其均值为μ,标准差为σ,当σ为1时,称作标准正态分布,如上图红色曲线。

由其特性可知,当标准差σ确定时,不论均值μ为多大,函数图像的形状都是一样的,不同的只是中轴线的位置。

forum.php?mod=viewthread&tid=14828894

正态分布的高斯函数表达式

正态分布中一些值得注意的量:

· 密度函数关于平均值μ对称

· 平均值μ与它的众数(statistical mode)以及中位数(median)同一数值。

· 函数曲线下68.268949%的面积在平均数μ左右的一个标准差σ范围内。

· 95.449974%的面积在平均数左右两个标准差σ的范围内。

· 99.730020%的面积在平均数左右三个标准差σ的范围内。

· 99.993666%的面积在平均数左右四个标准差σ的范围内。

· 函数曲线的拐点(inflection point)为离平均数μ一个标准差σ距离的位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值