二维正态分布的最大似然估计_机器学习系列(二)多元正态分布

equation?tex=%E5%A4%9A%E5%85%83%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83%5C%5C

一元正态分布回顾

如果随机变量

equation?tex=Y 服从均值为

equation?tex=u 方差为

equation?tex=%5Csigma%5E2 的正态分布 (Univariate normal distribution),

equation?tex=Y%5Csim+N%28%5Cmu%2C%5Csigma%5E2%29 ,则其概率密度函数为:

equation?tex=f%28y%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2+%5Cpi%7D+%5Csigma%7D+e%5E%7B-%5Cfrac%7B%28y-%5Cmu%29%5E%7B2%7D%7D%7B2+%5Csigma%5E%7B2%7D%7D%7D%2C+%5Cquad-%5Cinfty%3Cy%3C%5Cinfty%5C%5C整个分布可以仅用均值及方差来刻画

如果变量之间不相关,则它们相互独立

经典统计检验通常基于正态分布假设

正态分布可以模拟大量自然现象

多元正态分布

多元正态分布密度函数

类比于一元情况,若

equation?tex=p 维随机变量

equation?tex=%5Cmathrm%7By%7D%3D%5Cleft%28Y_%7B1%7D%2C+%5Cldots%2C+Y_%7Bp%7D%5Cright%29%5E%7B%5Cprime%7D 服从均值向量为

equation?tex=%5Cmu 和协方差矩阵为

equation?tex=%5Csum_%7B%7D%5E%7B%7D%7B%7D 的多元正态分布 (Multivariate normal distribution), 记为

equation?tex=Y%5Csim+N_p%28%5Cmu%2C%5CSigma%29 ,则密度函数为

equation?tex=f%28y%29%3D%5Cfrac%7B1%7D%7B%7B%282+%5Cpi%29%7D%5E%7Bp%2F2%7D%7C%5CSigma%7C%5E%7B1%2F2%7D+%7D++e%5E%7B-%7B%28y-%5Cmu%29%27%5CSigma%5E%7B-1%7D%7D%28y-%5Cmu%29%2F2%7D%5C%5C

equation?tex=p%3D2 时,

equation?tex=%5Cboldsymbol%7B%5Cmu%7D%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D+%5Cmu_%7B1%7D+%5C%5C+%5Cmu_%7B2%7D+%5Cend%7Barray%7D%5Cright%29%2C+%5Cmathbf%7B%5CSigma%7D%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bcc%7D+%5Csigma_%7B1%7D%5E%7B2%7D+%26+%5Crho_%7B12%7D+%5Csigma_%7B1%7D+%5Csigma_%7B2%7D+%5C%5C+%5Crho_%7B12%7D+%5Csigma_%7B1%7D+%5Csigma_%7B2%7D+%26+%5Csigma_%7B2%7D%5E%7B2%7D+%5Cend%7Barray%7D%5Cright%29%5C%5C

equation?tex=+

所以随机向量

equation?tex=y%3D%5Cleft%28Y_%7B1%7D%2C+Y_%7B2%7D%5Cright%29%5E%7B%5Cprime%7D 服从二元正态分布 (Bivariate normal distribution):

equation?tex=+%5Cmathbf%7By%7D+%5Csim+B+N%5Cleft%28%5Cmu_%7B1%7D%2C+%5Cmu_%7B2%7D%2C+%5Csigma_%7B1%7D%5E%7B2%7D%2C+%5Csigma_%7B2%7D%5E%7B2%7D%2C+%5Crho_%7B12%7D%5Cright%29 ,其密度函数为:

equation?tex=%5Cbegin%7Baligned%7D+f%5Cleft%28y_%7B1%7D%2C+y_%7B2%7D%5Cright%29%3D%26+%5Cfrac%7B1%7D%7B2+%5Cpi+%5Csigma_%7B1%7D+%5Csigma_%7B2%7D+%5Csqrt%7B%5Cleft%281-%5Crho_%7B12%7D%5E%7B2%7D%5Cright%29%7D%7D+%5Ctimes+%5C%5C+%26+%5Cexp+%5Cleft%5C%7B-%5Cfrac%7B%5Cleft%28%5Cfrac%7By_%7B1%7D-%5Cmu_%7B1%7D%7D%7B%5Csigma_%7B1%7D%7D%5Cright%29%5E%7B2%7D%2B%5Cleft%28%5Cfrac%7By_%7B2%7D-%5Cmu_%7B2%7D%7D%7B%5Csigma_%7B2%7D%7D%5Cright%29%5E%7B2%7D-2+%5Crho_%7B12%7D%5Cleft%28%5Cfrac%7By_%7B1%7D-%5Cmu_%7B1%7D%7D%7B%5Csigma_%7B1%7D%7D%5Cright%29%5Cleft%28%5Cfrac%7By_%7B2%7D-%5Cmu_%7B2%7D%7D%7B%5Csigma_%7B2%7D%7D%5Cright%29%7D%7B2%5Cleft%281-%5Crho_%7B12%7D%5E%7B2%7D%5Cright%29%7D%5Cright%5C%7D+%5Cend%7Baligned%7D

概率密度等高线

由于多元正态分布的密度函数为

equation?tex=f%28y%29%3D%5Cfrac%7B1%7D%7B%7B%282+%5Cpi%29%7D%5E%7Bp%2F2%7D%7C%5CSigma%7C%5E%7B1%2F2%7D+%7D++e%5E%7B-%7B%28y-%5Cmu%29%27%5CSigma%5E%7B-1%7D%7D%28y-%5Cmu%29%2F2%7D%5C%5C

其概率密度等高线可表示为:

equation?tex=%7B%28y-%5Cmu%29%27%5CSigma%5E%7B-1%7D%7D%28y-%5Cmu%29%3Dc%5E2

equation?tex=c 为一常数。

根据矩阵谱分解(Spectral decomposition):

equation?tex=%5Cboldsymbol%7B%5CSigma%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D+%5Cmathbf%7Be%7D_%7Bj%7D+%5Cmathbf%7Be%7D_%7Bj%7D%5E%7B%5Cprime%7D%5C%5C

这里的

equation?tex=%28%5Clambda_%7Bj%7D+%5Cmathbf%7Be%7D_%7Bj%7D+%29%2Cj+%3D+1%2C...%2C+p 是协方差矩阵

equation?tex=%5CSigma 的(正交)特征值-特征向量对。从而

equation?tex=%5Cboldsymbol%7B%5CSigma%7D%5E%7B-1%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bp%7D%5Cfrac%7B1%7D%7B+%5Clambda_%7Bj%7D%7D++%5Cmathbf%7Be%7D_%7Bj%7D+%5Cmathbf%7Be%7D_%7Bj%7D%5E%7B%5Cprime%7D%5C%5C

概率密度等高线:

equation?tex=%7B%28y-%5Cmu%29%27%5CSigma%5E%7B-1%7D%7D%28y-%5Cmu%29%3Dc%5E2 ,可写为:

equation?tex=%5Csum_%7Bj%3D1%7D%5E%7Bp%7D%5Cfrac%7B%5Cleft%5C%7B+e_j%27%28y-%5Cmu%29+%5Cright%5C%7D%5E2%7D%7B+c%5E2%5Clambda_%7Bj%7D%7D+%3D1%5C%5C

每条等高线都是以

equation?tex=%5Cmu+ 为中心、以

equation?tex=%5Cpm+c+%5Csqrt%7B%5Clambda_j%7De_j 为轴长的椭球。 这里的

equation?tex=%28%5Clambda_j%2Ce_j%29%2Cj%3D1%2C...%2Cp , 是协方差矩阵

equation?tex=%5CSigma 的特征值-特征向量。

二元正态分布概率密度等高线

同理,二元正态分布的概率密度等高线可以简化为 :

equation?tex=%7B%5Cleft%28%5Cfrac%7By_%7B1%7D-%5Cmu_%7B1%7D%7D%7B%5Csigma_%7B1%7D%7D%5Cright%29%5E%7B2%7D%2B%5Cleft%28%5Cfrac%7By_%7B2%7D-%5Cmu_%7B2%7D%7D%7B%5Csigma_%7B2%7D%7D%5Cright%29%5E%7B2%7D-2+%5Crho_%7B12%7D%5Cleft%28%5Cfrac%7By_%7B1%7D-%5Cmu_%7B1%7D%7D%7B%5Csigma_%7B1%7D%7D%5Cright%29%5Cleft%28%5Cfrac%7By_%7B2%7D-%5Cmu_%7B2%7D%7D%7B%5Csigma_%7B2%7D%7D%5Cright%29%7D%3Dc_1%5E2%5C%5C

考虑

equation?tex=%5Crho_%7B12%7D%3D0 时的情况:

equation?tex=%5Cleft%28%5Cfrac%7By_%7B1%7D-%5Cmu_%7B1%7D%7D%7Bc_1%5Csigma_%7B1%7D%7D%5Cright%29%5E%7B2%7D%2B%5Cleft%28%5Cfrac%7By_%7B2%7D-%5Cmu_%7B2%7D%7D%7Bc_1%5Csigma_%7B2%7D%7D%5Cright%29%5E%7B2%7D%3D1

equation?tex=%E5%A4%9A%E5%85%83%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83%E7%9A%84%E6%80%A7%E8%B4%A8%5C%5C

线性组合

向量

equation?tex=y 的线性组合的正态性:

• 假设

equation?tex=a%3D%28a_1%2C...%2Ca_p%29%27 是一个常数向量,

  • 4
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com
费雪线性判别是一种用于分类的统计方法,常用于模式识别与机器学习领域。它的主要思想是通过将数据投影到一个低维度的线性空间,使得不同类别的数据点在该空间中能够被有效地分离。费雪线性判别模型的目标是找到一个线性函数 f(x),将高维数据 x 映射到一个一维实数轴 y,使得样本点在 y 轴上的投影能够最大程度地分开不同的类别。 基于正态分布的线性判别分析(Linear Discriminant Analysis,LDA)是费雪线性判别的一种扩展,它假定观测数据服从正态分布,同时对不同类别的数据具有相同的协方差矩阵。在这种情况下,LDA 分析可以通过估计数据的概率密度来得到一组能够最大程度地区分不同类别的线性函数。LDA 对于含有多个类别的问题也可以进行扩展,例如多分类LDA(MLDA)。 具体来讲,费雪线性判别的工作过程包括如下几个步骤:首先,对于每个类别,估计其均值向量和协方差矩阵;然后,通过计算类别之间的 Fisher 距离值,得到最佳的线性判别函数;最后,将新的数据点投影到该函数上,即可进行分类。 需要提醒的是,费雪线性判别与其它分类算法一样,对数据分布的假设往往是非常关键的,如果数据的实际分布与假设的分布不同,就可能对分类效果产生影响。同时,在使用费雪线性判别进行分类时,还需要注意如何处理缺失值、异常值等常见的数据质量问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值